Finite-time internal stabilization of a linear 1-D transport equation

被引:15
作者
Zhang, Christophe [1 ,2 ]
机构
[1] Sorbonne Univ, Lab Jacques Louis Lions, Boite Courrier 187, F-75252 Paris 05, France
[2] Univ Paris Diderot, SPC, CNRS, INRIA,Equipe Cage, Paris, France
关键词
Transport equation; Feedback stabilization; Internal control; Finite-time; Backstepping; Fredholm transformations; BOUNDARY STABILIZATION; FEEDBACK STABILIZATION; NULL CONTROLLABILITY; RAPID STABILIZATION; CANONICAL-FORMS; SYSTEMS; DIMENSION; TANK;
D O I
10.1016/j.sysconle.2019.104529
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a 1-D linear transport equation on the interval (0, L), with an internal scalar control. We prove that if the system is controllable in a periodic Sobolev space of order greater than 1, then the system can be stabilized in finite time, and we give an explicit feedback law. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 40 条
[1]  
[Anonymous], 1998, SERIES FOURIER ONDEL
[2]   Infinite dimensional backstepping-style feedback transformations for a heat equation with an arbitrary level of instability [J].
Balogh, A ;
Krstic, M .
EUROPEAN JOURNAL OF CONTROL, 2002, 8 (02) :165-175
[3]  
Bastin G, 2016, PROG NONLINEAR DIFFE, V88, P1, DOI 10.1007/978-3-319-32062-5
[4]   Backstepping in infinite dimension for a class of parabolic distributed parameter systems [J].
Boskovic, DM ;
Balogh, A ;
Krstic, M .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2003, 16 (01) :44-75
[5]   CONTROL CANONICAL-FORMS AND EIGENVALUE ASSIGNMENT BY FEEDBACK FOR A CLASS OF LINEAR HYPERBOLIC SYSTEMS [J].
CLARKE, BMN ;
WILLIAMSON, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (06) :711-729
[6]  
Coron J.-M., 2007, Mathematical Surveys and Monographs, V136, DOI 10.1090/surv/136
[7]   Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems [J].
Coron, Jean-Michel ;
Bastin, Georges ;
d'Andrea-Novel, Brigitte .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (03) :1460-1498
[8]   Rapid stabilization of a linearized bilinear 1-D Schrodinger equation [J].
Coron, Jean-Michel ;
Gagnon, Ludovick ;
Morancey, Morgan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 115 :24-73
[9]   Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation* [J].
Coron, Jean-Michel ;
Hu, Long ;
Olive, Guillaume .
AUTOMATICA, 2017, 84 :95-100
[10]   Null Controllability and Finite Time Stabilization for the Heat Equations with Variable Coefficients in Space in One Dimension via Backstepping Approach [J].
Coron, Jean-Michel ;
Hoai-Minh Nguyen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) :993-1023