Unified Space-Time Finite Element Methods for Dissipative Continua Dynamics

被引:8
|
作者
Kim, Jinkyu [1 ]
Dargush, Gary F. [2 ]
Roh, Hwasung [3 ]
Ryu, Jaeho [4 ]
Kim, Dongkeon [5 ]
机构
[1] Hanyang Univ, Sch Architecture & Architectural Engn, 55 Hanyangdaehak Ro, Kyeonggi Do 426791, South Korea
[2] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[3] Chonbuk Natl Univ, Dept Civil Engn, 567 Baekje Daero, Jeonju Si 561756, Jeollabuk Do, South Korea
[4] Korea Univ, Sch Civil Environm & Architectural Engn, Anam Dong5 Ga1, Seoul 136713, South Korea
[5] Dong A Univ, Dept Architectural Engn, 37 Nakdong Daero 550 Beon Gil, Busan 604714, South Korea
基金
新加坡国家研究基金会;
关键词
Continuum dynamics; viscoelasticity; viscoplasticity;
D O I
10.1142/S1758825117500193
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based upon the extended framework of Hamiltons principle, unified space-time finite element methods for viscoelastic and viscoplastic continuum dynamics are presented, respectively. For numerical efficiency, mixed time-step algorithm in time- and displacement-based algorithm in space are adopted. Through analytical investigation, we demonstrate that the Newmarks constant average acceleration method and the present method are the same for viscoelasticity. With spatial eight-node brick elements, some numerical simulations are undertaken to validate and investigate the performance of the present non-iterative space-time finite element method for viscoplasticity.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Optimal Convergence Rates of Moving Finite Element Methods for Space-Time Fractional Differential Equations
    Gao, Xuemei
    Han, Xu
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [42] A space-time finite element formulation for the shallow water equations
    Ribeiro, FLB
    Galeao, AC
    Landau, L
    DEVELOPMENT AND APPLICATION OF COMPUTER TECHNIQUES TO ENVIRONMENTAL STUDIES VI, 1996, : 403 - 414
  • [43] Comments on 'Simplex space-time meshes in finite element simulations'
    Tezduyar, Tayfun E.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (11) : 1289 - 1290
  • [44] A space-time finite element method for fractional wave problems
    Binjie Li
    Hao Luo
    Xiaoping Xie
    Numerical Algorithms, 2020, 85 : 1095 - 1121
  • [45] A space-time finite element method for fractional wave problems
    Li, Binjie
    Luo, Hao
    Xie, Xiaoping
    NUMERICAL ALGORITHMS, 2020, 85 (03) : 1095 - 1121
  • [46] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [48] A continuous space-time finite element method for the wave equation
    French, DA
    Peterson, TE
    MATHEMATICS OF COMPUTATION, 1996, 65 (214) : 491 - 506
  • [49] An efficient solution algorithm for space-time finite element method
    Zhang, Rui
    Wen, Lihua
    Xiao, Jinyou
    Qian, Dong
    COMPUTATIONAL MECHANICS, 2019, 63 (03) : 455 - 470
  • [50] A space-time finite element method for the exterior acoustics problem
    Thompson, LL
    Pinsky, PM
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (06): : 3297 - 3311