Unified Space-Time Finite Element Methods for Dissipative Continua Dynamics

被引:8
|
作者
Kim, Jinkyu [1 ]
Dargush, Gary F. [2 ]
Roh, Hwasung [3 ]
Ryu, Jaeho [4 ]
Kim, Dongkeon [5 ]
机构
[1] Hanyang Univ, Sch Architecture & Architectural Engn, 55 Hanyangdaehak Ro, Kyeonggi Do 426791, South Korea
[2] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[3] Chonbuk Natl Univ, Dept Civil Engn, 567 Baekje Daero, Jeonju Si 561756, Jeollabuk Do, South Korea
[4] Korea Univ, Sch Civil Environm & Architectural Engn, Anam Dong5 Ga1, Seoul 136713, South Korea
[5] Dong A Univ, Dept Architectural Engn, 37 Nakdong Daero 550 Beon Gil, Busan 604714, South Korea
基金
新加坡国家研究基金会;
关键词
Continuum dynamics; viscoelasticity; viscoplasticity;
D O I
10.1142/S1758825117500193
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based upon the extended framework of Hamiltons principle, unified space-time finite element methods for viscoelastic and viscoplastic continuum dynamics are presented, respectively. For numerical efficiency, mixed time-step algorithm in time- and displacement-based algorithm in space are adopted. Through analytical investigation, we demonstrate that the Newmarks constant average acceleration method and the present method are the same for viscoelasticity. With spatial eight-node brick elements, some numerical simulations are undertaken to validate and investigate the performance of the present non-iterative space-time finite element method for viscoplasticity.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] FINITE-ELEMENT COLLOCATION METHODS FOR SPACE-TIME REACTOR DYNAMICS
    GROSSMAN, LM
    HENNART, JP
    MEADE, D
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1982, 41 : 311 - 312
  • [2] Space-Time Finite Element Methods for Parabolic Problems
    Steinbach, Olaf
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (04) : 551 - 566
  • [3] ANALYSIS OF SOME MOVING SPACE-TIME FINITE-ELEMENT METHODS
    BANK, RE
    SANTOS, RF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (01) : 1 - 18
  • [4] Implementation and adaptivity of a space-time finite element method for structural dynamics
    Li, XD
    Wiberg, NE
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 156 (1-4) : 211 - 229
  • [5] Surface And Hypersurface Meshing Techniques for Space-Time Finite Element Methods
    Anderson, Jude T.
    Williams, David M.
    Corrigan, Andrew
    COMPUTER-AIDED DESIGN, 2023, 163
  • [6] FINITE-ELEMENT SOLUTIONS OF SPACE-TIME NONLINEAR REACTOR DYNAMICS
    NGUYEN, DH
    SALINAS, D
    NUCLEAR SCIENCE AND ENGINEERING, 1976, 60 (02) : 120 - 130
  • [7] Foundations of space-time finite element methods: Polytopes, interpolation, and integration
    Frontin, Cory, V
    Walters, Gage S.
    Witherden, Freddie D.
    Lee, Carl W.
    Williams, David M.
    Darmofal, David L.
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 92 - 113
  • [8] Adaptive space-time finite element methods for parabolic optimization problems
    Meidner, Dominik
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) : 116 - 142
  • [9] Space-time finite element methods stabilized using bubble function spaces
    Toulopoulos, Ioannis
    APPLICABLE ANALYSIS, 2020, 99 (07) : 1153 - 1170
  • [10] Generalized multiscale finite element methods for space-time heterogeneous parabolic equations
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Ye, Shuai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 419 - 437