Machine learning approach to discovery of small molecules with potential inhibitory action against vasoactive metalloproteases

被引:10
作者
Canizares-Carmenate, Yudith [1 ]
Mena-Ulecia, Karel [2 ,3 ]
MacLeod Carey, Desmond [4 ]
Perera-Sardina, Yunier [5 ]
Hernandez-Rodriguez, Erix W. [5 ]
Marrero-Ponce, Yovani [6 ]
Torrens, Francisco [7 ]
Castillo-Garit, Juan A. [8 ]
机构
[1] Univ Cent Marta Abreu Las Villas, Fac Quim Farm, Unit Comp Aided Mol Biosilico Discovery & Bioinfo, Santa Clara 54830, Villa Clara, Cuba
[2] Univ Catolica Temuco, Fac Recursos Nat, Dept Ciencias Biol & Quim, Ave Rudecindo Ortega, Temuco 02950, Chile
[3] Univ Catolica Temuco, Fac Ingn, Nucleo Invest Bioprod & Mat Avanzados BIOMA, Ave Rudecindo Ortega, Temuco 02950, Chile
[4] Univ Autonoma Chile, Inst Ciencias Quim Aplicadas, Inorgan Chem & Mol Mat Ctr, Fac Ingn, Santiago 2801, Chile
[5] Univ Catolica Maule, Fac Med, Escuela Quim & Farm, Lab Bioinformat & Quim Computac, Talca, Chile
[6] Univ San Francisco Quito, Escuela Med, Grp Med Mol & Traslac MeM & T, Edificio Especialidades Med, Quito, Ecuador
[7] Univ Valencia, Inst Univ Ciencia Mol, Edifici Inst Paterna,POB 22085, Valencia 46071, Spain
[8] Univ Ciencias Med Villa Clara, Carretera Acueducto & Circunvalac, Unidad Toxicol Expt, Santa Clara 50200, Villa Clara, Cuba
关键词
Angiotensin-converting enzyme; Artificial intelligence; Docking; Machine learning; Neutral endopeptidase; Thermolysin; Virtual screening; SCORING FUNCTION; THERMOLYSIN; OPTIMIZATION; ACCURACY; PEPTIDE; UPDATE;
D O I
10.1007/s11030-021-10260-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the advancement of combinatorial chemistry and big data, drug repositioning has boomed. In this sense, machine learning and artificial intelligence techniques offer a priori information to identify the most promising candidates. In this study, we combine QSAR and docking methodologies to identify compounds with potential inhibitory activity of vasoactive metalloproteases for the treatment of cardiovascular diseases. To develop this study, we used a database of 191 thermolysin inhibitor compounds, which is the largest as far as we know. First, we use Dragon's molecular descriptors (0-3D) to develop classification models using Bayesian networks (Naive Bayes) and artificial neural networks (Multilayer Perceptron). The obtained models are used for virtual screening of small molecules in the international DrugBank database. Second, docking experiments are carried out for all three enzymes using the Autodock Vina program, to identify possible interactions with the active site of human metalloproteases. As a result, high-performance artificial intelligence QSAR models are obtained for training and prediction sets. These allowed the identification of 18 compounds with potential inhibitory activity and an adequate oral bioavailability profile, which were evaluated using docking. Four of them showed high binding energies for the three enzymes, and we propose them as potential dual ACE/NEP inhibitors for the control of blood pressure. In summary, the in silico strategies used here constitute an important tool for the early identification of new antihypertensive drug candidates, with substantial savings in time and money. Graphic abstract
引用
收藏
页码:1383 / 1397
页数:15
相关论文
共 39 条
[1]   Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening [J].
Alberto Castillo-Garit, Juan ;
del Toro-Cortes, Oremia ;
Vega, Maria C. ;
Rolon, Miriam ;
Rojas de Arias, Antonieta ;
Casanola-Martin, Gerardo M. ;
Escario, Jose A. ;
Gomez-Barrio, Alicia ;
Marrero-Ponce, Yovani ;
Torrens, Francisco ;
Abad, Concepcion .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2015, 96 :238-244
[2]   Estrogen and hypertension [J].
Ashraf, Muhammad S. ;
Vongpatanasin, Wanpen .
CURRENT HYPERTENSION REPORTS, 2006, 8 (05) :368-376
[3]   RELATIONSHIP BETWEEN THE INHIBITORY POTENCIES OF THIORPHAN AND RETROTHIORPHAN ENANTIOMERS ON THERMOLYSIN AND NEUTRAL ENDOPEPTIDASE-24.11 AND THEIR INTERACTIONS WITH THE THERMOLYSIN ACTIVE-SITE BY COMPUTER MODELING [J].
BENCHETRIT, T ;
FOURNIEZALUSKI, MC ;
ROQUES, BP .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1987, 147 (03) :1034-1040
[4]   An approach to identify new antihypertensive agents using Thermolysin as model: In silico study based on QSARINS and docking [J].
Canizares-Carmenate, Yudith ;
Mena-Ulecia, Karel ;
Perera-Sardina, Yunier ;
Torrens, Francisco ;
Castillo-Garit, Juan A. .
ARABIAN JOURNAL OF CHEMISTRY, 2019, 12 (08) :4861-4877
[5]   Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis [J].
Castillo-Garit, J. A. ;
Casanola-Martin, G. M. ;
Barigye, S. J. ;
Pham-The, H. ;
Torrens, F. ;
Torreblanca, A. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2017, 28 (09) :735-747
[6]   The angiotensin converting enzyme (ACE) [J].
Coates, D .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2003, 35 (06) :769-773
[7]   Vasopeptidase inhibitors -: A new therapeutic concept in cardiovascular disease? [J].
Corti, R ;
Burnett, JC ;
Rouleau, JL ;
Ruschitzka, F ;
Lüscher, TF .
CIRCULATION, 2001, 104 (15) :1856-1862
[8]   Innovation in the pharmaceutical industry: New estimates of R&D costs [J].
DiMasi, Joseph A. ;
Grabowski, Henry G. ;
Hansen, Ronald W. .
JOURNAL OF HEALTH ECONOMICS, 2016, 47 :20-33
[9]  
DrugBank, DRUG BANK DAT
[10]   INHIBITION OF THERMOLYSIN BY DIPEPTIDES [J].
FEDER, J ;
BROUGHAM, LR ;
WILDI, BS .
BIOCHEMISTRY, 1974, 13 (06) :1186-1189