Invariant Algebraic Curves and Hyperelliptic Limit Cycles of Lienard Systems

被引:3
|
作者
Qian, Xinjie [1 ]
Shen, Yang [2 ]
Yang, Jiazhong [2 ]
机构
[1] Jinling Inst Technol, Sch Sci, Nanjing 211169, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
16th Hilbert problem; Lienard systems; Invariant algebraic curves; Hyperelliptic limit cycles;
D O I
10.1007/s12346-021-00484-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with the Lienard system (x) over dot = y, (y) over dot = - f(m)(x) y - g(n)(x), where f(m)(x) and g(n)(x) are real polynomials of degree m and n, respectively. We call this system the Lienard system of type (m, n). For this system, we proved that if m + 1 = <= n <= [4m+2/3], then the maximum number of hyperelliptic limit cycles is n - m - 1, and this bound is sharp. This result indicates that the Lienard system of type (m, m+1) has no hyperelliptic limit cycles. Secondly, we present examples of irreducible algebraic curves of arbitrary high degree for Lienard systems of type (m, 2m + 1). Moreover, these systems have a rational first integral. Finally, we proved that the Lienard system of type (2, 5) has at most one hyperelliptic limit cycle, and this bound is sharp.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Limit cycles in Lienard systems with saturation
    Lathuiliere, Thomas
    Valmorbida, Giorgio
    Panteley, Elena
    IFAC PAPERSONLINE, 2018, 51 (33): : 127 - 131
  • [22] Limit cycles of polynomial Lienard systems
    Llibre, J
    Pizarro, L
    Ponce, E
    PHYSICAL REVIEW E, 1998, 58 (04): : 5185 - 5187
  • [23] Limit cycles in generalized Lienard systems
    Yu, P.
    Han, M.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1048 - 1068
  • [24] Invariant algebraic curves for the cubic Lienard system with linear damping
    Chavarriga, J.
    Garcia, I. A.
    Llibre, J.
    Zoladek, H.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (05): : 428 - 441
  • [25] INVARIANT ALGEBRAIC CURVES FOR CERTAIN GENERALIZED LIENARD DIFFERENTIAL SYSTEM
    Gine, Jaume
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, : 480 - 487
  • [26] Maximum amplitude of limit cycles in Lienard systems
    Turner, N.
    McClintock, P. V. E.
    Stefanovska, A.
    PHYSICAL REVIEW E, 2015, 91 (01)
  • [27] Limit cycles of some polynomial Lienard systems
    Xu, Weijiao
    Li, Cuiping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 367 - 378
  • [28] On the uniqueness of limit cycles for generalized Lienard systems
    Zhou, Hui
    Yuan, Yueding
    OPEN MATHEMATICS, 2023, 21 (01):
  • [30] On the number of limit cycles of polynomial Lienard systems
    Han, Maoan
    Romanovski, Valery G.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1655 - 1668