Properties of in-plane graphene/MoS2 heterojunctions

被引:42
作者
Chen, Wei [1 ,2 ,3 ,4 ]
Yang, Yuan [5 ]
Zhang, Zhenyu [3 ,4 ]
Kaxiras, Efthimios [1 ,2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[5] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
基金
中国国家自然科学基金;
关键词
2D material; lateral heterojunction; density functional theory; boundary states; Fermi level pinning; half-metallicity; HEXAGONAL BORON-NITRIDE; MOS2; TRANSITION; CONTACTS; GROWTH; ELECTRONICS; SCHOTTKY;
D O I
10.1088/2053-1583/aa8313
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The graphene/MoS2 heterojunction formed by joining the two components laterally in a single plane promises to exhibit a low-resistance contact according to the Schottky-Mott rule. Here we provide an atomic-scale description of the structural, electronic, and magnetic properties of this type of junction. We first identify the energetically favorable structures in which the preference of forming C-S or C-Mo bonds at the boundary depends on the chemical conditions. We find that significant non-carrier related charge transfer between graphene and undoped MoS2 is localized at the boundary. We show that the abundant 1D boundary states substantially pin the Fermi level in the lateral contact between graphene and MoS2, in close analogy to the effect of 2D interfacial states in the contacts between 3D materials. Furthermore, we propose specific ways in which these effects can be exploited to achieve spin-polarized currents.
引用
收藏
页数:8
相关论文
共 64 条
[11]  
Duan XD, 2014, NAT NANOTECHNOL, V9, P1024, DOI [10.1038/NNANO.2014.222, 10.1038/nnano.2014.222]
[12]  
Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]
[13]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[14]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[15]   Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors [J].
Gong, Cheng ;
Zhang, Hengji ;
Wang, Weihua ;
Colombo, Luigi ;
Wallace, Robert M. ;
Cho, Kyeongjae .
APPLIED PHYSICS LETTERS, 2013, 103 (05)
[16]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[17]   Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials [J].
Guimaraes, Marcos H. D. ;
Gao, Hui ;
Han, Yimo ;
Kang, Kibum ;
Xie, Saien ;
Kim, Cheol-Joo ;
Muller, David A. ;
Ralph, Daniel C. ;
Park, Jiwoong .
ACS NANO, 2016, 10 (06) :6392-6399
[18]   Perspectives for spintronics in 2D materials [J].
Han, Wei .
APL MATERIALS, 2016, 4 (03)
[19]  
Han W, 2014, NAT NANOTECHNOL, V9, P794, DOI [10.1038/NNANO.2014.214, 10.1038/nnano.2014.214]
[20]   Theory of Graphene Raman Scattering [J].
Heller, Eric J. ;
Yang, Yuan ;
Kocia, Lucas ;
Chen, Wei ;
Fang, Shiang ;
Borunda, Mario ;
Kaxiras, Efthimios .
ACS NANO, 2016, 10 (02) :2803-2818