The design of DNA self-assembled computing circuitry

被引:18
作者
Dwyer, C [1 ]
Vicci, L
Poulton, J
Erie, D
Superfine, R
Washburn, S
Taylor, RM
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27516 USA
[3] Rambus Inc, Los Altos, CA 94022 USA
[4] Univ N Carolina, Dept Chem, Chapel Hill, NC 27516 USA
[5] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27516 USA
关键词
associative memories; computer architecture; DNA self-assembly; nanoelectronics; parallel processing;
D O I
10.1109/TVLSI.2004.836322
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a design methodology for a nanoscale self-assembling fabrication process that uses the specificity of DNA hybridization to guide the formation of electrical circuitry. Custom design software allows us to specify the function of a structure in a way similar to that used by VLSI circuit designers. In an analogous manner to generating masks for a photolithographic process, our software generates an assembly procedure including DNA sequence allocation. We have found that the number of unique DNA sequences needed to assemble a structure scales with its surface area. Using a simple face-serial assembly order we can specify an unambiguous assembly sequence for a structure of any size with only 15 unique DNA sequences.
引用
收藏
页码:1214 / 1220
页数:7
相关论文
共 20 条
[1]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[2]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[3]  
Dekker C, 2001, PHYS WORLD, V14, P29
[4]   DNA-driven self-assembly of gold nanorods [J].
Dujardin, E ;
Hsin, LB ;
Wang, CRC ;
Mann, S .
CHEMICAL COMMUNICATIONS, 2001, (14) :1264-1265
[5]   Performance simulation of nanoscale silicon rod field-effect transistor logic [J].
Dwyer, C ;
Vicci, L ;
Taylor, RM .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (02) :69-74
[6]  
DWYER C, 2002, P 2 IEEE C NAN ARL V, P601
[7]   A system architecture solution for unreliable nanoelectronic devices [J].
Han, J ;
Jonker, P .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (04) :201-208
[8]  
HENDRICKSON JB, 1970, INORGANIC CHEM, V1
[9]  
Mbindyo JKN, 2001, ADV MATER, V13, P249, DOI 10.1002/1521-4095(200102)13:4<249::AID-ADMA249>3.0.CO
[10]  
2-9