Approximate identification in Laguerre and Kautz bases

被引:53
作者
Bokor, J
Schipp, F
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, Hungary
[2] Eotvos L Univ Budapest, H-1086 Budapest, Hungary
关键词
identification algorithms; model approximation; convergence; Fourier analysis;
D O I
10.1016/S0005-1098(97)00201-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper elaborates a class of linear L-infinity approximation algorithms generated by phi-weighted partial sums of biorthogonal expansion in Laguerre and Kautz basis. This problem arises typically as the first step of the "two-step" identification under H-infinity criterion. Bounds on the the partial sum operators and on the L-infinity norm of the approximation error are derived. A frequency domain identification procedure is proposed where the model parameters are computed by DFT of appropriately transformed data. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 37 条
[1]  
BOKOR J, 1994, BASIS SELECTION DISC, V4403
[2]  
Butzer PL., 1971, FOURIER ANAL APPROXI
[3]  
CAI MP, 1995, APPROXIMATING FREQUE
[4]   THE CARATHEODORY-FEJER PROBLEM AND H-INFINITY/L(1) IDENTIFICATION - A TIME-DOMAIN APPROACH [J].
CHEN, J ;
NETT, CN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (04) :729-735
[5]  
Chen J., 1992, Proceedings of the 1992 American Control Conference (IEEE Cat. No.92CH3072-6), P251
[6]  
Chui C. K., 1992, An introduction to wavelets, V1
[7]  
deVries DK, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P1240, DOI 10.1109/CDC.1995.480267
[8]  
Duren PL., 1970, Theory of Hp Spaces
[9]  
ESILVA TO, 1995, RATIONAL ORTHONORMAL
[10]  
ESILVA TO, 1995, IEEE T AUTOMAT CONTR, V40, P342