Continuity of composition operators in Sobolev spaces

被引:6
作者
Bourdaud, Gerard [1 ]
Moussai, Madani [2 ]
机构
[1] Univ Paris, IMJ PRG, Case 7012, F-75205 Paris 13, France
[2] M Boudiaf Univ MSila, Lab Funct Anal & Geometry Spaces, Msila 28000, Algeria
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2019年 / 36卷 / 07期
关键词
Composition operators; Sobolev spaces; DI BRUNO FORMULA; SUPERPOSITION OPERATORS; HOMOGENEOUS BESOV; REALIZATIONS; CALCULUS;
D O I
10.1016/j.anihpc.2019.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that all the composition operators T-f (g) := f o g, which take the Adams-Frazier space W-m(p) boolean AND (W)over dot(mp)(1) (R-n) to itself, are continuous mappings from W-p(m) boolean AND (W)over dot(mp)(1) (R-n) to itself, for every integer m >= 2 and every real number 1 <= p < infinity. The same automatic continuity property holds for Sobolev spaces W-p(m) (R-n) for m >= 2 and 1 <= p < infinity. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:2053 / 2063
页数:11
相关论文
共 29 条
[1]   COMPOSITION OPERATORS ON POTENTIAL SPACES [J].
ADAMS, DR ;
FRAZIER, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (01) :155-165
[2]  
Allaoui S.E., 2016, ANN FAC SCI TOULOUSE, V25, P875
[3]   Uniform location of spaces of Besov and Lizorkin- Triebel [J].
Allaoui, Salah Eddine ;
Bourdaud, Gerard .
ARCHIV DER MATHEMATIK, 2017, 109 (06) :551-562
[4]  
Ambrosetti A., 1993, PRIMER NONLINEAR ANA
[5]  
ANCONA A, 1976, CR ACAD SCI A MATH, V282, P871
[6]  
[Anonymous], 2011, RIMS Kokyuroku Bessatsu
[7]  
[Anonymous], 1985, Sobolev Spaces
[8]  
[Anonymous], 1928, Acta Sci. Math
[9]  
Appell J., 1990, Cambridge Tracts in Mathematics, V95
[10]  
Bourbaki N., 1974, Elements of Mathematics-Algebra I