Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice

被引:59
作者
Bo, Chen [1 ,2 ]
Chen, Haowei [1 ,2 ]
Luo, Guowei [1 ,2 ]
Li, Wei [1 ,2 ]
Zhang, Xingen [1 ,2 ]
Ma, Qing [1 ,3 ]
Cheng, Beijiu [1 ,3 ]
Cai, Ronghao [1 ,3 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Life Sci, Key Lab Crop Biol Anhui Prov, Hefei 230036, Anhui, Peoples R China
[3] Anhui Agr Univ, Sch Life Sci, Engn Res Ctr Maize Anhui Prov, Hefei 230036, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ABA; Maize; RNA-seq; Salt stress; WRKY transcription factor; ZmWRKY114; TRANSCRIPTION FACTOR; DNA-BINDING; RESPONSIVE GENES; ENHANCES DROUGHT; ABIOTIC STRESS; EXPRESSION; OVEREXPRESSION; PLANT; ABA; SALINITY;
D O I
10.1007/s00299-019-02481-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Key message Overexpression in rice of the isolated salt-responsive WRKY114 gene from maize resulted in decreases in both salt-stress tolerance and abscisic acid sensitivity by regulating stress- and abscisic acid-related gene expression. WRKYs are an important family of transcription factors that widely participate in plant development, defense regulation and stress responses. In this research, WRKY114 encoding a WRKY transcription factor was cloned from maize (Zea mays L.). ZmWRKY114 expression was down-regulated by salt stress but up-regulated by abscisic acid (ABA) treatments. ZmWRKY114 is a nuclear protein with no transcriptional activation ability in yeast. A yeast one-hybrid experiment confirmed that ZmWRKY114 possesses an ability to specifically bind to W-boxes. The heterologous overexpression of ZmWRKY114 in rice enhanced the salt-stress sensitivity as indicated by the transgenic plants having reduced heights, root lengths and survival rates under salt-stress conditions. In addition, transgenic plants also retained lower proline contents, but greater malondialdehyde contents and relative electrical leakage levels. Additionally, ZmWRKY114-overexpressing plants showed less sensitivity to ABA during the early seedling growth stage. Further analyses indicated that transgenic rice accumulated higher levels of ABA than wild-type plants under salt-stress conditions. Transcriptome and quantitative real-time PCR analyses indicated that a few regulatory genes, which play vital roles in controlling plant stress responses and/or the ABA signaling pathway, were affected by ZmWRKY114 overexpression when rice was treated with NaCl. Thus, ZmWRKY114 may function as a negative factor that participates in salt-stress responses through an ABA-mediated pathway.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [41] The salt and ABA inducible transcription factor gene, SlAITR3, negatively regulates tomato salt tolerance
    Wang, Xinsheng
    Huo, Zechun
    Ma, Li
    Ou, Siying
    Guo, Meng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 222
  • [42] A Heat Shock Transcription Factor TrHSFB2a of White Clover Negatively Regulates Drought, Heat and Salt Stress Tolerance in Transgenic Arabidopsis
    Iqbal, Muhammad Zafar
    Jia, Tong
    Tang, Tao
    Anwar, Muhammad
    Ali, Asif
    Hassan, Muhammad Jawad
    Zhang, Youzhi
    Tang, Qilin
    Peng, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [43] A Novel Heat Shock Transcription Factor (ZmHsf08) Negatively Regulates Salt and Drought Stress Responses in Maize
    Wang, Jing
    Chen, Li
    Long, Yun
    Si, Weina
    Cheng, Beijiu
    Jiang, Haiyang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [44] ZmASR3 from the Maize ASR Gene Family Positively Regulates Drought Tolerance in Transgenic Arabidopsis
    Liang, Yani
    Jiang, Yingli
    Du, Ming
    Li, Baoyan
    Chen, Long
    Chen, Mingchao
    Jin, Demiao
    Wu, Jiandong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (09)
  • [45] Mulberry RGS negatively regulates salt stress response and tolerance
    Liu, Changying
    Fan, Wei
    Zhu, Panpan
    Xia, Zhongqiang
    Hu, Jie
    Zhao, Aichun
    PLANT SIGNALING & BEHAVIOR, 2019, 14 (12)
  • [46] OsWRKY114 Negatively Regulates Drought Tolerance by Restricting Stomatal Closure in Rice
    Song, Giha
    Son, Seungmin
    Lee, Kyong Sil
    Park, Yeo Jin
    Suh, Eun Jung
    Lee, Soo In
    Park, Sang Ryeol
    PLANTS-BASEL, 2022, 11 (15):
  • [47] Bermudagrass CdWRKY50 gene negatively regulates plants' response to salt stress
    Huang, Xuebing
    Amee, Maurice
    Chen, Liang
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 188
  • [48] Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis
    Jiang, Yingli
    Zheng, Qianqian
    Chen, Long
    Liang, Yani
    Wu, Jiandong
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (01)
  • [49] A WRKY Transcription Factor CbWRKY27 Negatively Regulates Salt Tolerance in Catalpa bungei
    Gu, Jiaojiao
    Lv, Fenni
    Gao, Lulu
    Jiang, Shengji
    Wang, Qing
    Li, Sumei
    Yang, Rutong
    Li, Ya
    Li, Shaofeng
    Wang, Peng
    FORESTS, 2023, 14 (03):
  • [50] A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses
    Saad, Abu Sefyan I.
    Li, Xu
    Li, He-Ping
    Huang, Tao
    Gao, Chun-Sheng
    Guo, Mao-Wei
    Cheng, Wei
    Zhao, Guang-Yao
    Liao, Yu-Cai
    PLANT SCIENCE, 2013, 203 : 33 - 40