Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice

被引:59
|
作者
Bo, Chen [1 ,2 ]
Chen, Haowei [1 ,2 ]
Luo, Guowei [1 ,2 ]
Li, Wei [1 ,2 ]
Zhang, Xingen [1 ,2 ]
Ma, Qing [1 ,3 ]
Cheng, Beijiu [1 ,3 ]
Cai, Ronghao [1 ,3 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Life Sci, Key Lab Crop Biol Anhui Prov, Hefei 230036, Anhui, Peoples R China
[3] Anhui Agr Univ, Sch Life Sci, Engn Res Ctr Maize Anhui Prov, Hefei 230036, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ABA; Maize; RNA-seq; Salt stress; WRKY transcription factor; ZmWRKY114; TRANSCRIPTION FACTOR; DNA-BINDING; RESPONSIVE GENES; ENHANCES DROUGHT; ABIOTIC STRESS; EXPRESSION; OVEREXPRESSION; PLANT; ABA; SALINITY;
D O I
10.1007/s00299-019-02481-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Key message Overexpression in rice of the isolated salt-responsive WRKY114 gene from maize resulted in decreases in both salt-stress tolerance and abscisic acid sensitivity by regulating stress- and abscisic acid-related gene expression. WRKYs are an important family of transcription factors that widely participate in plant development, defense regulation and stress responses. In this research, WRKY114 encoding a WRKY transcription factor was cloned from maize (Zea mays L.). ZmWRKY114 expression was down-regulated by salt stress but up-regulated by abscisic acid (ABA) treatments. ZmWRKY114 is a nuclear protein with no transcriptional activation ability in yeast. A yeast one-hybrid experiment confirmed that ZmWRKY114 possesses an ability to specifically bind to W-boxes. The heterologous overexpression of ZmWRKY114 in rice enhanced the salt-stress sensitivity as indicated by the transgenic plants having reduced heights, root lengths and survival rates under salt-stress conditions. In addition, transgenic plants also retained lower proline contents, but greater malondialdehyde contents and relative electrical leakage levels. Additionally, ZmWRKY114-overexpressing plants showed less sensitivity to ABA during the early seedling growth stage. Further analyses indicated that transgenic rice accumulated higher levels of ABA than wild-type plants under salt-stress conditions. Transcriptome and quantitative real-time PCR analyses indicated that a few regulatory genes, which play vital roles in controlling plant stress responses and/or the ABA signaling pathway, were affected by ZmWRKY114 overexpression when rice was treated with NaCl. Thus, ZmWRKY114 may function as a negative factor that participates in salt-stress responses through an ABA-mediated pathway.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [21] Expression of the ArabidopsisAtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean
    Jun Sung Seo
    Hwang Bae Sohn
    Kaeyoung Noh
    Choonkyun Jung
    Ju Hee An
    Christopher M. Donovan
    David A. Somers
    Dae In Kim
    Soon-Chun Jeong
    Chang-Gi Kim
    Hwan Mook Kim
    Suk-Ha Lee
    Yang Do Choi
    Tae Wha Moon
    Chung Ho Kim
    Jong-Joo Cheong
    Molecular Breeding, 2012, 29 : 601 - 608
  • [22] A member of NF-Y family, OsNF-YC5 negatively regulates salt tolerance in rice
    Yan, Xin
    Han, Mengtian
    Li, Shuai
    Liang, Zhiyan
    Ouyang, Jiexiu
    Wang, Xin
    Liao, Pengfei
    GENE, 2024, 892
  • [23] A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut
    Zhu, Hong
    Jiang, Yanan
    Guo, Yue
    Huang, Jianbin
    Zhou, Minghan
    Tang, Yanyan
    Sui, Jiongming
    Wang, Jingshan
    Qiao, Lixian
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 175 - 183
  • [24] A WRKY transcription factor from Malus domestica negatively regulates dehydration stress in transgenic Arabidopsis
    Duan, Guo-feng
    Li, Li-juan
    Liu, Qun-long
    ACTA PHYSIOLOGIAE PLANTARUM, 2014, 36 (02) : 541 - 548
  • [25] Chrysanthemum DgWRKY2 Gene Enhances Tolerance to Salt Stress in Transgenic Chrysanthemum
    He, Ling
    Wu, Yin-Huan
    Zhao, Qian
    Wang, Bei
    Liu, Qing-Lin
    Zhang, Lei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (07)
  • [26] A Novel Sweetpotato WRKY Transcription Factor, IbWRKY2, Positively Regulates Drought and Salt Tolerance in Transgenic Arabidopsis
    Zhu, Hong
    Zhou, Yuanyuan
    Zhai, Hong
    He, Shaozhen
    Zhao, Ning
    Liu, Qingchang
    BIOMOLECULES, 2020, 10 (04)
  • [27] A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis
    Chien, Pei-Shan
    Nam, Hong Gil
    Chen, Yet-Ran
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (17) : 5301 - 5313
  • [28] A Group I WRKY Gene, TaWRKY133, Negatively Regulates Drought Resistance in Transgenic Plants
    Lv, Meicheng
    Luo, Wen
    Ge, Miaomiao
    Guan, Yijun
    Tang, Yan
    Chen, Weimin
    Lv, Jinyin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (19)
  • [29] MicroRNA2871b of Dongxiang Wild Rice (Oryza rufipogon Griff.) Negatively Regulates Cold and Salt Stress Tolerance in Transgenic Rice Plants
    Yang, Wanling
    Chen, Yong
    Gao, Rifang
    Chen, Yaling
    Zhou, Yi
    Xie, Jiankun
    Zhang, Fantao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [30] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qin, Qianqian
    Zhao, Yujun
    Zhang, Jiajun
    Chen, Li
    Si, Weina
    Jiang, Haiyang
    BMC PLANT BIOLOGY, 2022, 22 (01)