Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice

被引:71
作者
Bo, Chen [1 ,2 ]
Chen, Haowei [1 ,2 ]
Luo, Guowei [1 ,2 ]
Li, Wei [1 ,2 ]
Zhang, Xingen [1 ,2 ]
Ma, Qing [1 ,3 ]
Cheng, Beijiu [1 ,3 ]
Cai, Ronghao [1 ,3 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Life Sci, Key Lab Crop Biol Anhui Prov, Hefei 230036, Anhui, Peoples R China
[3] Anhui Agr Univ, Sch Life Sci, Engn Res Ctr Maize Anhui Prov, Hefei 230036, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ABA; Maize; RNA-seq; Salt stress; WRKY transcription factor; ZmWRKY114; TRANSCRIPTION FACTOR; DNA-BINDING; RESPONSIVE GENES; ENHANCES DROUGHT; ABIOTIC STRESS; EXPRESSION; OVEREXPRESSION; PLANT; ABA; SALINITY;
D O I
10.1007/s00299-019-02481-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Key message Overexpression in rice of the isolated salt-responsive WRKY114 gene from maize resulted in decreases in both salt-stress tolerance and abscisic acid sensitivity by regulating stress- and abscisic acid-related gene expression. WRKYs are an important family of transcription factors that widely participate in plant development, defense regulation and stress responses. In this research, WRKY114 encoding a WRKY transcription factor was cloned from maize (Zea mays L.). ZmWRKY114 expression was down-regulated by salt stress but up-regulated by abscisic acid (ABA) treatments. ZmWRKY114 is a nuclear protein with no transcriptional activation ability in yeast. A yeast one-hybrid experiment confirmed that ZmWRKY114 possesses an ability to specifically bind to W-boxes. The heterologous overexpression of ZmWRKY114 in rice enhanced the salt-stress sensitivity as indicated by the transgenic plants having reduced heights, root lengths and survival rates under salt-stress conditions. In addition, transgenic plants also retained lower proline contents, but greater malondialdehyde contents and relative electrical leakage levels. Additionally, ZmWRKY114-overexpressing plants showed less sensitivity to ABA during the early seedling growth stage. Further analyses indicated that transgenic rice accumulated higher levels of ABA than wild-type plants under salt-stress conditions. Transcriptome and quantitative real-time PCR analyses indicated that a few regulatory genes, which play vital roles in controlling plant stress responses and/or the ABA signaling pathway, were affected by ZmWRKY114 overexpression when rice was treated with NaCl. Thus, ZmWRKY114 may function as a negative factor that participates in salt-stress responses through an ABA-mediated pathway.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 66 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]  
Abrahám E, 2010, METHODS MOL BIOL, V639, P317, DOI 10.1007/978-1-60761-702-0_20
[3]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[4]   Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection [J].
Bencke-Malato, Marta ;
Cabreira, Caroline ;
Wiebke-Strohm, Beatriz ;
Buecker-Neto, Lauro ;
Mancini, Estefania ;
Osorio, Marina B. ;
Homrich, Milena S. ;
Turchetto-Zolet, Andreia Carina ;
De Carvalho, Mayra C. C. G. ;
Stolf, Renata ;
Weber, Ricardo L. M. ;
Westergaard, Gaston ;
Castagnaro, Atilio P. ;
Abdelnoor, Ricardo V. ;
Marcelino-Guimaraes, Francismar C. ;
Margis-Pinheiro, Marcia ;
Bodanese-Zanettini, Maria Helena .
BMC PLANT BIOLOGY, 2014, 14 :1-18
[5]   Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana [J].
Burssens, S ;
Himanen, K ;
van de Cotte, B ;
Beeckman, T ;
Van Montagu, M ;
Inzé, D ;
Verbruggen, N .
PLANTA, 2000, 211 (05) :632-640
[6]   The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants [J].
Cai, Ronghao ;
Dai, Wei ;
Zhang, Congsheng ;
Wang, Yan ;
Wu, Min ;
Zhao, Yang ;
Ma, Qing ;
Xiang, Yan ;
Cheng, Beijiu .
PLANTA, 2017, 246 (06) :1215-1231
[7]   Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice [J].
Cai, Ronghao ;
Zhao, Yang ;
Wang, Yufu ;
Lin, Yongxiang ;
Peng, Xiaojian ;
Li, Qian ;
Chang, Yuwei ;
Jiang, Haiyang ;
Xiang, Yan ;
Cheng, Beijiu .
PLANT CELL TISSUE AND ORGAN CULTURE, 2014, 119 (03) :565-577
[8]   PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize [J].
Cao, Jianmei ;
Yao, Dongmei ;
Lin, Fan ;
Jiang, Mingyi .
ACTA PHYSIOLOGIAE PLANTARUM, 2014, 36 (05) :1271-1281
[9]   The role of WRKY transcription factors in plant abiotic stresses [J].
Chen, Ligang ;
Song, Yu ;
Li, Shujia ;
Zhang, Liping ;
Zou, Changsong ;
Yu, Diqiu .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02) :120-128
[10]   ProteinProtein Interactions in the Regulation of WRKY Transcription Factors [J].
Chi, Yingjun ;
Yang, Yan ;
Zhou, Yuan ;
Zhou, Jie ;
Fan, Baofang ;
Yu, Jing-Quan ;
Chen, Zhixiang .
MOLECULAR PLANT, 2013, 6 (02) :287-300