Effect of sintering temperature on electrochemical performance of LiFe0.4Mn0.6PO4/C cathode materials

被引:6
作者
Huang, Y. P. [1 ]
Li, X. [2 ]
Chen, Z. [1 ]
Wu, Y. [1 ]
Chen, Y. [3 ]
Kuang, C. J. [1 ]
Zhou, S. X. [1 ]
机构
[1] Adv Technol & Mat Co Ltd, China Iron & Steel Res Inst Grp, Beijing 100081, *, Peoples R China
[2] Univ Cincinnati, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA
[3] Deakin Univ, Inst Frontier Mat, Waurn Ponds, Vic 3216, Australia
关键词
LiFe0.4Mn0.6PO4/C; Electrochemical properties; Sintering temperature; Cyclic voltammetry; Lithium ion battery; PHOSPHO-OLIVINES; LITHIUM; LIMNPO4; MECHANISM; LIFEPO4;
D O I
10.1179/1432891714Z.000000000664
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon coated LiFe0.4Mn0.6PO4 (LiFe0.4Mn0.6PO4/C) was synthesised using high energy ball milling and annealing processes. The starting materials of Li2C2O4, FeC2O4.2H(2)O, MnC2O4.2H(2)O, NH4H2PO4 were firstly milled for 40 h, and followed by further milling for 5 h after adding glucose solution. The milled sample was heated at different temperatures (550, 600, 650 and 700 degrees C) for 10 h to produce LiFe0.4Mn0.6PO4/C composites. The structure and morphology of the samples were investigated using X-ray diffraction, field emission scanning electron microscopy, and high resolution electron microscopy. The phase of samples annealed at 550 and 600 degrees C mainly consists of olivine type LiFePO4, but a small amount of Fe2P impurity phase is formed in the samples annealed at 650 and 700 degrees C. Electrochemical analysis results show that LiFe0.4Mn0.6PO4/C synthesised at 600 degrees C exhibits the best performance with the initial discharge capacity of 128 mAh g(-1) at 0.1 C, and 109 mAh g(-1) at 1 degrees C after 500 cycles. The LiFe0.4Mn0.6PO4/C exhibits excellent electrochemical properties for high energy density lithium ion batteries.
引用
收藏
页码:2 / 5
页数:4
相关论文
共 18 条
[1]   LiMnPO4 - A next generation cathode material for lithium-ion batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3518-3539
[2]   Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)PO4 for 0 < x ≤ 1 and y=0.0, 0.5 and 1.0 [J].
Burba, Christopher A. ;
Frech, Roger .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :870-876
[3]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[4]   Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1-xFexPO4 (x=0.2, 0.3) materials for lithium-ion batteries [J].
Damen, Libero ;
De Giorgio, Francesca ;
Monaco, Simone ;
Veronesi, Federico ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2012, 218 :250-253
[5]   Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries [J].
Devaraju, Murukanahally Kempaiah ;
Honma, Itaru .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :284-297
[6]   LiFexMn1-xPO4: A cathode for lithium-ion batteries [J].
Hong, Jian ;
Wang, Feng ;
Wang, Xiaoliang ;
Graetz, Jason .
JOURNAL OF POWER SOURCES, 2011, 196 (07) :3659-3663
[7]   Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate lithium ion batteries [J].
Liu, Wen ;
Gao, Ping ;
Mi, Yingying ;
Chen, Jitao ;
Zhou, Henghui ;
Zhang, Xinxiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (07) :2411-2417
[8]   Diffusional mechanism of deintercalation in LiFe1-yMnyPO4 cathode material [J].
Molenda, J. ;
Ojczyk, W. ;
Swierczek, K. ;
Zajac, W. ;
Krok, F. ;
Dygas, J. ;
Liu, Ru-Shi .
SOLID STATE IONICS, 2006, 177 (26-32) :2617-2624
[9]   Experimental visualization of lithium diffusion in LixFePO4 [J].
Nishimura, Shin-ichi ;
Kobayashi, Genki ;
Ohoyama, Kenji ;
Kanno, Ryoji ;
Yashima, Masatomo ;
Yamada, Atsuo .
NATURE MATERIALS, 2008, 7 (09) :707-711
[10]  
Oh S.-M., 2012, Angewandte Chemie, V124, P1889, DOI DOI 10.1002/ange.201107394