RAGE Modulates Hypoxia/Reoxygenation Injury in Adult Murine Cardiomyocytes via JNK and GSK-3β Signaling Pathways

被引:77
作者
Shang, Linshan [1 ]
Ananthakrishnan, Radha [1 ]
Li, Qing [1 ]
Quadri, Nosirudeen [1 ]
Abdillahi, Mariane [1 ]
Zhu, Zhengbin [1 ]
Qu, Wu [1 ]
Rosario, Rosa [1 ]
Toure, Fatouma [1 ]
Yan, Shi Fang [1 ]
Schmidt, Ann Marie [1 ]
Ramasamy, Ravichandran [1 ]
机构
[1] Columbia Univ, Coll Phys & Surg, Dept Surg, Div Surg Sci, New York, NY 10027 USA
关键词
N-TERMINAL KINASE; GLYCOGEN-SYNTHASE KINASE-3-BETA; PROMOTES SURVIVAL; CARDIAC MYOCYTES; CELL-DEATH; IN-VITRO; ACTIVATION; APOPTOSIS; ISCHEMIA; STRESS;
D O I
10.1371/journal.pone.0010092
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Advanced glycation end-products (AGEs) have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE) and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R) injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R). Methodology/Principal Findings: Cardiomyocytes isolated from adult wild-type (WT), homozygous RAGE-null (RKO), and WT mice treated with soluble RAGE (sRAGE) were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML)-AGE (termed "CML" in this manuscript) was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3 beta phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3 beta/total GSK-3 beta in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3 beta, in modulating H/R injury in adult cardiomyocytes. Conclusions/Significance: These data illustrate key roles for RAGE-ligand interaction in the pathogenesis of cardiomyocyte injury induced by hypoxia/reoxygenation and indicate that the effects of RAGE are mediated by JNK activation and dephosphorylation of GSK-3 beta. The outcome in this study lends further support to the potential use of RAGE blockade as an adjunctive therapy for protection of the ischemic heart.
引用
收藏
页数:10
相关论文
共 35 条
[1]   RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model [J].
Aleshin, Alexey ;
Ananthakrishnan, Radha ;
Li, Qing ;
Rosario, Rosa ;
Lu, Yan ;
Qu, Wu ;
Song, Fei ;
Bakr, Soliman ;
Szabolcs, Matthias ;
D'Agati, Vivette ;
Liu, Rui ;
Homma, Shunichi ;
Schmidt, Ann Marie ;
Yan, Shi Fang ;
Ramasamy, Ravichandran .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 294 (04) :H1823-H1832
[2]   Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis [J].
Andreka, P ;
Zang, J ;
Dougherty, C ;
Slepak, TI ;
Webster, KA ;
Bishopric, NH .
CIRCULATION RESEARCH, 2001, 88 (03) :305-312
[3]   Ventricular myocytes are not terminally differentiated in the adult mammalian heart [J].
Anversa, P ;
Kajstura, J .
CIRCULATION RESEARCH, 1998, 83 (01) :1-14
[4]   Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes [J].
Aoki, H ;
Kang, PM ;
Hampe, J ;
Yoshimura, K ;
Noma, T ;
Matsuzaki, M ;
Izumo, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :10244-10250
[5]   Receptor for advanced-glycation end products - Key modulator of myocardial ischemic injury [J].
Bucciarelli, LG ;
Kaneko, M ;
Ananthakrishnan, R ;
Harja, E ;
Lee, LK ;
Hwang, YC ;
Lerner, S ;
Bakr, S ;
Li, Q ;
Lu, Y ;
Song, F ;
Qu, W ;
Gomez, T ;
Zou, YS ;
Yan, SF ;
Schmidt, AM ;
Ramasamy, R .
CIRCULATION, 2006, 113 (09) :1226-1234
[6]   RAGE and modulation of ischemic injury in the diabetic myocardium [J].
Bucciarelli, Loredana G. ;
Ananthakrishnan, Radha ;
Hwang, Yuying C. ;
Kaneko, Michiyo ;
Soling, Fei ;
Sell, David R. ;
Strauch, Christopher ;
Monnier, Vincent M. ;
Yan, Shi Fang ;
Schmidt, Ann Marie ;
Ramasamy, Ravichandran .
DIABETES, 2008, 57 (07) :1941-1951
[7]   RAGE limits regeneration after massive liver injury by coordinated suppression TNF-α and NF-κB [J].
Cataldegirmen, G ;
Zeng, S ;
Feirt, N ;
Ippagunta, N ;
Dun, H ;
Lu, Y ;
Rong, LL ;
Hofmann, MA ;
Kislinger, T ;
Pachydaki, SI ;
Jenkins, DG ;
Weinberg, A ;
Lefkowitch, J ;
Rogiers, X ;
Yan, SF ;
Schmidt, AM ;
Emond, JC .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 201 (03) :473-484
[8]   Characterization of apoptosis signal transduction pathways in HL-5 cardiomyocytes exposed to ischemia/reperfusion oxidative stress model [J].
Cicconi, S ;
Ventura, N ;
Pastore, D ;
Bonini, P ;
Di Nardo, P ;
Lauro, R ;
Marlier, LNJL .
JOURNAL OF CELLULAR PHYSIOLOGY, 2003, 195 (01) :27-37
[9]   Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription [J].
Coghlan, MP ;
Culbert, AA ;
Cross, DAE ;
Corcoran, SL ;
Yates, JW ;
Pearce, NJ ;
Rausch, OL ;
Murphy, GJ ;
Carter, PS ;
Cox, LR ;
Mills, D ;
Brown, MJ ;
Haigh, D ;
Ward, RW ;
Smith, DG ;
Murray, KJ ;
Reith, AD ;
Holder, JC .
CHEMISTRY & BIOLOGY, 2000, 7 (10) :793-803
[10]   Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis [J].
Das, A ;
Xi, L ;
Kukreja, RC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (13) :12944-12955