WELL POSEDNESS FOR THE 1D ZAKHAROV-RUBENCHIK SYSTEM

被引:4
|
作者
Linares, Felipe [1 ]
Matheus, Carlos [2 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
[2] Coll France, F-75231 Paris, France
关键词
ILL-POSEDNESS; SCHRODINGER-EQUATIONS; KDV;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local and global well posedness results are established for the initial-value problem associated to the ID Zakharov-Rubenchik system. We show that our results are sharp in some situations by proving ill-posedness results otherwise. The global results allow us to study the norm growth of solutions corresponding to the Schrodinger equation term. We use ideas recently introduced to study the classical Zakharov systems.
引用
收藏
页码:261 / 288
页数:28
相关论文
共 50 条
  • [1] Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system
    Ponce, G
    Saut, JC
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (03) : 811 - 825
  • [2] Supersonic limit for the Zakharov-Rubenchik system
    Cordero Ceballos, Juan Carlos
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 5260 - 5288
  • [3] Two numerical methods for the Zakharov-Rubenchik equations
    Xuanxuan Zhou
    Tingchun Wang
    Luming Zhang
    Advances in Computational Mathematics, 2019, 45 : 1163 - 1184
  • [4] Artificial boundary method for the Zakharov-Rubenchik equations
    Li, Hongwei
    Zhang, Xiangyu
    NUMERICAL ALGORITHMS, 2024, 97 (03) : 1017 - 1037
  • [5] Adiabatic limit of the Zakharov-Rubenchik equation
    Oliveira, Filipe
    REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (01) : 13 - 27
  • [6] ON THE CAUCHY PROBLEM FOR THE ZAKHAROV-RUBENCHIK/ BENNEY-ROSKES SYSTEM
    Luong, Hung
    Mauser, Norbert J.
    Saut, Jean-Claude
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) : 1573 - 1594
  • [7] Low Regularity Global Well-posedness for the Quantum Zakharov System in 1D
    Chen, Tsai-Jung
    Fang, Yung-Fu
    Wang, Kuan-Hsiang
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (02): : 341 - 361
  • [8] Two numerical methods for the Zakharov-Rubenchik equations
    Zhou, Xuanxuan
    Wang, Tingchun
    Zhang, Luming
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (03) : 1163 - 1184
  • [9] Conservative compact difference scheme for the Zakharov-Rubenchik equations
    Ji, Bingquan
    Zhang, Luming
    Zhou, Xuanxuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 537 - 556