The data filtering based generalized stochastic gradient parameter estimation algorithms for multivariate output-error autoregressive systems using the auxiliary model

被引:4
作者
Liu, Qinyao [1 ]
Ding, Feng [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Jidda 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Parameter estimation; Filtering technique; Multi-innovation identification; Multivariate system; Auxiliary model; LEAST-SQUARES IDENTIFICATION; MULTI-INNOVATION; DYNAMICAL-SYSTEMS; NEWTON ITERATION; STATE ESTIMATION; CLOSED-LOOP; DELAY; NETWORKS; APPROXIMATION; PERFORMANCE;
D O I
10.1007/s11045-017-0529-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Parameter estimation has wide applications in one-dimensional and multidimensional signal processing and filtering. This paper focuses on the parameter estimation problem of multivariate output-error autoregressive systems. Based on the data filtering technique and the auxiliary model identification idea, we derive a filtering based auxiliary model generalized stochastic gradient algorithm. The key is to choose an appropriate filter to filter the input-output data and to study a novel method to get the system model parameters and noise model parameters respectively. By employing the multi-innovation identification theory, a filtering based auxiliary model multi-innovation generalized stochastic gradient algorithm is proposed. Compared with the auxiliary model generalized stochastic gradient algorithm, the proposed algorithms can generate more accurate parameter estimates. Finally, an illustrative example is provided to verify the effectiveness of the proposed algorithms.
引用
收藏
页码:1781 / 1800
页数:20
相关论文
共 50 条
  • [31] The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique
    Li, Meihang
    Liu, Ximei
    SIGNAL PROCESSING, 2018, 147 : 23 - 34
  • [32] Decomposition-Based Gradient Estimation Algorithms for Multivariate Equation-Error Autoregressive Systems Using the Multi-innovation Theory
    Ping Ma
    Feng Ding
    Ahmed Alsaedi
    Tasawar Hayat
    Circuits, Systems, and Signal Processing, 2018, 37 : 1846 - 1862
  • [33] Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems
    Mao, Yawen
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (02) : 651 - 667
  • [34] Auxiliary model-based least-squares identification methods for Hammerstein output-error systems
    Ding, Feng
    Shi, Yang
    Chen, Tongwen
    SYSTEMS & CONTROL LETTERS, 2007, 56 (05) : 373 - 380
  • [35] Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems
    Xu, Ling
    Ding, Feng
    Yang, Erfu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (01) : 148 - 165
  • [36] The Auxiliary Model Based Hierarchical Estimation Algorithms for Bilinear Stochastic Systems with Colored Noises
    Guo, Chunqiu
    Wang, Longjin
    Deng, Fang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (03) : 650 - 660
  • [37] Auxiliary model based recursive and iterative least squares algorithm for autoregressive output error autoregressive systems
    Jin, Qibing
    Cao, Liting
    Yang, Ruigeng
    Wang, Qi
    Wang, Zhu
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (22) : 7008 - 7016
  • [38] Data filtering based least squares iterative algorithm for parameter identification of output error autoregressive systems
    Chen, Huibo
    Zhang, Wenge
    Ding, Feng
    INFORMATION PROCESSING LETTERS, 2014, 114 (10) : 573 - 578
  • [39] Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems
    Wang, Dongqing
    Ding, Feng
    DIGITAL SIGNAL PROCESSING, 2010, 20 (03) : 750 - 762
  • [40] Multi-Innovation Stochastic Gradient Algorithm for Output Error Systems Based on the Auxiliary Model
    Wang, Dongqing
    Ding, Feng
    Liu, Peter X.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5594 - +