Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks

被引:0
作者
Xu, Xingyuan [1 ,2 ]
Tan, Mengxi [1 ]
Wu, Jiayang [1 ]
Boes, Andreas [3 ]
Corcoran, Bill [2 ]
Nguyen, Thach G. [3 ]
Chu, Sai T. [4 ]
Little, Brent E. [5 ]
Morandotti, Roberto [6 ]
Mitchell, Arnan [3 ]
Hicks, Damien G. [1 ,7 ]
Moss, David J. [1 ]
机构
[1] Swinburne Univ Technol, Opt Sci Ctr, Hawthorn, Vic 3122, Australia
[2] Monash Univ, Dept Elect & Comp Syst Engn, Clayton, Vic 3800, Australia
[3] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Hong Kong, Peoples R China
[5] Chinese Acad Sci, Xian Inst Opt & Precis Mech Precis Mech, Xian, Peoples R China
[6] INRS Energie Mat & Telecommun, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[7] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
来源
2020 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP 2020) | 2020年
关键词
WAVELENGTH CONVERSION; HILBERT TRANSFORMER; TUNABLE DISPERSION; COMB; MICROWAVE; RF; FILTER; LASER; GENERATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN - a single neuron perceptron - by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection - achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.
引用
收藏
页码:220 / 224
页数:5
相关论文
共 71 条
  • [1] Human action recognition with a large-scale brain-inspired photonic computer
    Antonik, Piotr
    Marsal, Nicolas
    Brunner, Daniel
    Rontani, Damien
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (11) : 530 - 537
  • [2] Information processing using a single dynamical node as complex system
    Appeltant, L.
    Soriano, M. C.
    Van der Sande, G.
    Danckaert, J.
    Massar, S.
    Dambre, J.
    Schrauwen, B.
    Mirasso, C. R.
    Fischer, I.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [3] Laser cavity-soliton microcombs
    Bao, Hualong
    Cooper, Andrew
    Rowley, Maxwell
    Di Lauro, Luigi
    Gongora, Juan Sebastian Totero
    Chu, Sai T.
    Little, Brent E.
    Oppo, Gian-Luca
    Morandotti, Roberto
    Moss, David J.
    Wetzel, Benjamin
    Peccianti, Marco
    Pasquazi, Alessia
    [J]. NATURE PHOTONICS, 2019, 13 (06) : 384 - +
  • [4] Type-II micro-comb generation in a filter-driven four wave mixing laser [Invited]
    Bao, Hualong
    Cooper, Andrew
    Chu, Sai T.
    Moss, Dave J.
    Morandotti, Roberto
    Little, Brent E.
    Peccianti, Marco
    Pasquazi, Alessia
    [J]. PHOTONICS RESEARCH, 2018, 6 (05) : B67 - B73
  • [5] Soliton crystals in Kerr resonators
    Cole, Daniel C.
    Lamb, Erin S.
    Del'Haye, Pascal
    Diddams, Scott A.
    Papp, Scott B.
    [J]. NATURE PHOTONICS, 2017, 11 (10) : 671 - +
  • [6] Ultra-dense optical data transmission over standard fibre with a single chip source
    Corcoran, Bill
    Tan, Mengxi
    Xu, Xingyuan
    Boes, Andreas
    Wu, Jiayang
    Nguyen, Thach G.
    Chu, Sai T.
    Little, Brent E.
    Morandotti, Roberto
    Mitchell, Arnan
    Moss, David J.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] Supercontinuum generation in a high index doped silica glass spiral waveguide
    Duchesne, David
    Peccianti, Marco
    Lamont, Michael R. E.
    Ferrera, Marcello
    Razzari, Luca
    Legare, Francois
    Morandotti, Roberto
    Chu, Sai
    Little, Brent E.
    Moss, David J.
    [J]. OPTICS EXPRESS, 2010, 18 (02): : 923 - 930
  • [8] Convolutional networks for fast, energy-efficient neuromorphic computing
    Esser, Steven K.
    Merolla, Paul A.
    Arthur, John V.
    Cassidy, Andrew S.
    Appuswamy, Rathinakumar
    Andreopoulos, Alexander
    Berg, David J.
    McKinstry, Jeffrey L.
    Melano, Timothy
    Barch, Davis R.
    di Nolfo, Carmelo
    Datta, Pallab
    Amir, Arnon
    Taba, Brian
    Flickner, Myron D.
    Modha, Dharmendra S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) : 11441 - 11446
  • [9] All-optical spiking neurosynaptic networks with self-learning capabilities
    Feldmann, J.
    Youngblood, N.
    Wright, C. D.
    Bhaskaran, H.
    Pernice, W. H. P.
    [J]. NATURE, 2019, 569 (7755) : 208 - +
  • [10] On-chip CMOS-compatible all-optical integrator
    Ferrera, M.
    Park, Y.
    Razzari, L.
    Little, B. E.
    Chu, S. T.
    Morandotti, R.
    Moss, D. J.
    Azana, J.
    [J]. NATURE COMMUNICATIONS, 2010, 1