Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment

被引:5
作者
Wang, Yu-Feng [1 ,2 ]
Tadimalla, Sirisha [1 ]
Hayden, Amy J. [3 ,4 ,5 ]
Holloway, Lois [1 ,2 ,6 ]
Haworth, Annette [1 ]
机构
[1] Univ Sydney, Fac Sci, Sch Phys, Inst Med Phys, Sydney, NSW, Australia
[2] Ingham Inst Appl Med Res, Liverpool, NSW, Australia
[3] Westmead Hosp, Sydney West Radiat Oncol, Wentworthville, NSW, Australia
[4] Western Sydney Univ, Fac Med, Sydney, NSW, Australia
[5] Macquarie Univ, Fac Med Hlth & Human Sci, Sydney, NSW, Australia
[6] Liverpool Hosp, Liverpool & Macarthur Canc Therapy Ctr, Liverpool, NSW, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
artificial intelligence; local relapse; magnetic resonance imaging; prostate cancer; quantitative imaging biomarkers; radiation therapy; APPARENT DIFFUSION-COEFFICIENT; CONTRAST-ENHANCED MRI; ANDROGEN-DEPRIVATION THERAPY; DOSE-RATE BRACHYTHERAPY; EXTERNAL-BEAM RADIOTHERAPY; LOCAL RECURRENCE; PERIPHERAL ZONE; WEIGHTED MRI; RADICAL PROSTATECTOMY; MULTIPARAMETRIC MRI;
D O I
10.1111/1754-9485.13242
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
引用
收藏
页码:612 / 626
页数:15
相关论文
共 197 条
  • [51] Correlation of ADC and T2 Measurements With Cell Density in Prostate Cancer at 3.0 Tesla
    Gibbs, Peter
    Liney, Gary P.
    Pickles, Martin D.
    Zelhof, Bashar
    Rodrigues, Greta
    Turnbull, Lindsay W.
    [J]. INVESTIGATIVE RADIOLOGY, 2009, 44 (09) : 572 - 576
  • [52] A simple noise correction scheme for diffusional kurtosis imaging
    Glenn, G. Russell
    Tabesh, Ali
    Jensen, Jens H.
    [J]. MAGNETIC RESONANCE IMAGING, 2015, 33 (01) : 124 - 133
  • [53] Haralick Textural Features on T2-Weighted MRI Are Associated With Biochemical Recurrence Following Radiotherapy for Peripheral Zone Prostate Cancer
    Gnep, Khemara
    Fargeas, Aureline
    Gutierrez-Carvajal, Ricardo E.
    Commandeur, Frederic
    Mathieu, Romain
    Ospina, Juan D.
    Rolland, Yan
    Rohou, Tanguy
    Vincendeau, Sebastien
    Hatt, Mathieu
    Acosta, Oscar
    de Crevoisier, Renaud
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (01) : 103 - 117
  • [54] A new era: artificial intelligence and machine learning in prostate cancer
    Goldenberg, S. Larry
    Nir, Guy
    Salcudean, Septimiu E.
    [J]. NATURE REVIEWS UROLOGY, 2019, 16 (07) : 391 - 403
  • [55] Survival after biochemical failure in prostate cancer treated with radiotherapy: Spanish Registry of Prostate Cancer (RECAP) database outcomes
    Gonzalez-San Segundo, C.
    Jove, J.
    Zapatero, A.
    Pastor-Peidro, J.
    Vazquez, M. L.
    Casana, M.
    Mengual, J. L.
    Gomez-Caamano, A.
    Gomez-Iturriaga, A.
    Vallejo, C.
    Henriquez, I
    Munoz-Garcia, J. L.
    Clemente, J.
    Porras, M.
    Collado, E.
    Ossola, G.
    Villafranca, E.
    Cabeza, M. A.
    Lopez-Torrecilla, J.
    [J]. CLINICAL & TRANSLATIONAL ONCOLOGY, 2019, 21 (08) : 1044 - 1051
  • [56] Quantitative imaging for radiotherapy purposes
    Gurney-Champion, Oliver J.
    Mahmood, Faisal
    van Schie, Marcel
    Julian, Robert
    George, Ben
    Philippens, Marielle E. P.
    van der Heide, Uulke A.
    Thorwarth, Daniela
    Redalen, Kathrine R.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2020, 146 : 66 - 75
  • [57] Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy
    Haider, Masoom A.
    Chung, Peter
    Sweet, Joan
    Toi, Ants
    Jhaveri, Kartik
    Menard, Cynthia
    Warde, Padraig
    Trachtenberg, John
    Lockwood, Gina
    Milosevic, Michael
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 70 (02): : 425 - 430
  • [58] Relationship between Apparent Diffusion Coefficients at 3.0-T MR Imaging and Gleason Grade in Peripheral Zone Prostate Cancer
    Hambrock, Thomas
    Somford, Diederik M.
    Huisman, Henkjan J.
    van Oort, Inge M.
    Witjes, J. Alfred
    Hulsbergen-van de Kaa, Christina A.
    Scheenen, Thomas
    Barentsz, Jelle O.
    [J]. RADIOLOGY, 2011, 259 (02) : 453 - 461
  • [59] Multiparametric MRI of the prostate with three functional techniques in patients with PSA elevation before initial TRUS-guided biopsy
    Hauth, Elke
    Hohmuth, Horst
    Cozub-Poetica, Corina
    Bernand, Stefan
    Beer, Meinrad
    Jaeger, Horst
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2015, 88 (1054)
  • [60] Health A.I.f. Welfare, 2019, HLTH AIF CANC SER