Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment

被引:5
作者
Wang, Yu-Feng [1 ,2 ]
Tadimalla, Sirisha [1 ]
Hayden, Amy J. [3 ,4 ,5 ]
Holloway, Lois [1 ,2 ,6 ]
Haworth, Annette [1 ]
机构
[1] Univ Sydney, Fac Sci, Sch Phys, Inst Med Phys, Sydney, NSW, Australia
[2] Ingham Inst Appl Med Res, Liverpool, NSW, Australia
[3] Westmead Hosp, Sydney West Radiat Oncol, Wentworthville, NSW, Australia
[4] Western Sydney Univ, Fac Med, Sydney, NSW, Australia
[5] Macquarie Univ, Fac Med Hlth & Human Sci, Sydney, NSW, Australia
[6] Liverpool Hosp, Liverpool & Macarthur Canc Therapy Ctr, Liverpool, NSW, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
artificial intelligence; local relapse; magnetic resonance imaging; prostate cancer; quantitative imaging biomarkers; radiation therapy; APPARENT DIFFUSION-COEFFICIENT; CONTRAST-ENHANCED MRI; ANDROGEN-DEPRIVATION THERAPY; DOSE-RATE BRACHYTHERAPY; EXTERNAL-BEAM RADIOTHERAPY; LOCAL RECURRENCE; PERIPHERAL ZONE; WEIGHTED MRI; RADICAL PROSTATECTOMY; MULTIPARAMETRIC MRI;
D O I
10.1111/1754-9485.13242
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
引用
收藏
页码:612 / 626
页数:15
相关论文
共 197 条
  • [41] Evaluation of different mathematical models and different b-value ranges of diffusion weighted imaging in peripheral zone prostate cancer detection using b-value up to 4500 s/mm2
    Feng, Zhaoyan
    Min, Xiangde
    Margolis, Daniel J. A.
    Duan, Caohui
    Chen, Yuping
    Sah, Vivek Kumar
    Chaudhary, Nabin
    Li, Basen
    Ke, Zan
    Zhang, Peipei
    Wang, Liang
    [J]. PLOS ONE, 2017, 12 (02):
  • [42] Multiparametric MRI as a Biomarker of Response to Neoadjuvant Therapy for Localized Prostate Cancer-A Pilot Study
    Fennessy, Fiona M.
    Fedorov, Andriy
    Vangel, Mark G.
    Mulkern, Robert, V
    Tretiakova, Maria
    Lis, Rosina T.
    Tempany, Clare
    Taplin, Mary-Ellen
    [J]. ACADEMIC RADIOLOGY, 2020, 27 (10) : 1432 - 1439
  • [43] Biochemical recurrence prediction after radiotherapy for prostate cancer with T2w magnetic resonance imaging radiomic features
    Fernandes, Catarina Dinis
    Dinh, Cuong, V
    Walraven, Iris
    Heijmink, Stijn W.
    Smolic, Milena
    van Griethuysen, Joost J. M.
    Simoes, Rita
    Losnegard, Are
    van der Poel, Henk G.
    Pos, Floris J.
    van der Heide, Uulke A.
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2018, 7 : 9 - 15
  • [44] Multiparametric MRI Tumor Probability Model for the Detection of Locally Recurrent Prostate Cancer After Radiation Therapy: Pathologic Validation and Comparison With Manual Tumor Delineations
    Fernandes, Catarina Dinis
    Simoes, Rita
    Ghobadi, Ghazaleh
    Heijmink, Stijn W. T. P. J.
    Schoots, Ivo G.
    de Jong, Jeroen
    Walraven, Iris
    van der Poel, Henk G.
    van Houdt, Petra J.
    Smolic, Milena
    Pos, Floris J.
    van der Heide, Uulke A.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : 140 - 148
  • [45] Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy
    Fernandes, Catarina Dinis
    van Houdt, Petra J.
    Heijmink, Stijn W. T. P. J.
    Walraven, Iris
    Keesman, Rick
    Smolic, Milena
    Ghobadi, Ghazaleh
    van der Poel, Henk G.
    Schoots, Ivo G.
    Pos, Floris J.
    van der Heide, Uulke A.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (01) : 269 - 278
  • [46] Quantitative 3-T multi-parametric MRI and step-section pathology of recurrent prostate cancer patients after radiation therapy
    Fernandes, Catarina Dinis
    Ghobadi, Ghazaleh
    van der Poel, Henk G.
    de Jong, Jeroen
    Heijmink, Stijn W. T. P. J.
    Schoots, Ivo
    Walraven, Iris
    van Houdt, Petra J.
    Smolic, Milena
    Pos, Floris J.
    van der Heide, Uulke A.
    [J]. EUROPEAN RADIOLOGY, 2019, 29 (08) : 4160 - 4168
  • [47] Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer
    Foltz, Warren D.
    Wu, Andy
    Chung, Peter
    Catton, Charles
    Bayley, Andrew
    Milosevic, Michael
    Bristow, Robert
    Warde, Padraig
    Simeonov, Anna
    Jaffray, David A.
    Haider, Masoom A.
    Menard, Cynthia
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 37 (04) : 909 - 916
  • [48] Application of an unsupervised multi-characteristic framework for intermediate-high risk prostate cancer localization using diffusion-weighted MRI
    Freidlin, Raisa Z.
    Agarwal, Harsh K.
    Sankineni, Sandeep
    Brown, Anna M.
    Mertan, Francesca
    Bernardo, Marcelino
    Daar, Dagane
    Merino, Maria
    Citrin, Deborah
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. MAGNETIC RESONANCE IMAGING, 2016, 34 (09) : 1227 - 1234
  • [49] Differential diagnosis of prostate cancer and noncancerous tissue in the peripheral zone and central gland using the quantitative parameters of DCE-MRI A meta-analysis
    Gao, Peng
    Shi, Changzheng
    Zhao, Lianping
    Zhou, Quan
    Luo, Liangping
    [J]. MEDICINE, 2016, 95 (52)
  • [50] A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations
    Ger, Rachel B.
    Mohamed, Abdallah S. R.
    Awan, Musaddiq J.
    Ding, Yao
    Li, Kimberly
    Fave, Xenia J.
    Beers, Andrew L.
    Driscoll, Brandon
    Elhalawani, Hesham
    Hormuth, David A., II
    van Houdt, Petra J.
    He, Renjie
    Zhou, Shouhao
    Mathieu, Kelsey B.
    Li, Heng
    Coolens, Catherine
    Chung, Caroline
    Bankson, James A.
    Huang, Wei
    Wang, Jihong
    Sandulache, Vlad C.
    Lai, Stephen Y.
    Howell, Rebecca M.
    Stafford, R. Jason
    Yankeelov, Thomas E.
    van der Heide, Uulke A.
    Frank, Steven J.
    Barboriak, Daniel P.
    Hazle, John D.
    Court, Laurence E.
    Kalpathy-Cramer, Jayashree
    Fuller, Clifton D.
    [J]. SCIENTIFIC REPORTS, 2017, 7