Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment

被引:5
作者
Wang, Yu-Feng [1 ,2 ]
Tadimalla, Sirisha [1 ]
Hayden, Amy J. [3 ,4 ,5 ]
Holloway, Lois [1 ,2 ,6 ]
Haworth, Annette [1 ]
机构
[1] Univ Sydney, Fac Sci, Sch Phys, Inst Med Phys, Sydney, NSW, Australia
[2] Ingham Inst Appl Med Res, Liverpool, NSW, Australia
[3] Westmead Hosp, Sydney West Radiat Oncol, Wentworthville, NSW, Australia
[4] Western Sydney Univ, Fac Med, Sydney, NSW, Australia
[5] Macquarie Univ, Fac Med Hlth & Human Sci, Sydney, NSW, Australia
[6] Liverpool Hosp, Liverpool & Macarthur Canc Therapy Ctr, Liverpool, NSW, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
artificial intelligence; local relapse; magnetic resonance imaging; prostate cancer; quantitative imaging biomarkers; radiation therapy; APPARENT DIFFUSION-COEFFICIENT; CONTRAST-ENHANCED MRI; ANDROGEN-DEPRIVATION THERAPY; DOSE-RATE BRACHYTHERAPY; EXTERNAL-BEAM RADIOTHERAPY; LOCAL RECURRENCE; PERIPHERAL ZONE; WEIGHTED MRI; RADICAL PROSTATECTOMY; MULTIPARAMETRIC MRI;
D O I
10.1111/1754-9485.13242
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
引用
收藏
页码:612 / 626
页数:15
相关论文
共 197 条
  • [11] Bao J, 2017, EUR J RADIOL OPEN, V4, P123, DOI 10.1016/j.ejro.2017.08.003
  • [12] DCE and DW MRI in monitoring response to androgen deprivation therapy in patients with prostate cancer: A feasibility study
    Barrett, T.
    Gill, A. B.
    Kataoka, M. Y.
    Priest, A. N.
    Joubert, I.
    McLean, M. A.
    Graves, M. J.
    Stearn, S.
    Lomas, D. J.
    Griffiths, J. R.
    Neal, D.
    Gnanapragasam, V. J.
    Sala, E.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (03) : 778 - 785
  • [13] Inferring microstructural features and the physiological state of tissues from diffusion-weighted images
    Basser, PJ
    [J]. NMR IN BIOMEDICINE, 1995, 8 (7-8) : 333 - 344
  • [14] Evaluation of T1 relaxation time in prostate cancer and benign prostate tissue using a Modified Look-Locker inversion recovery sequence
    Baur, Alexander D. J.
    Hansen, Carla M.
    Rogasch, Julian
    Posch, Helena
    Elezkurtaj, Sefer
    Maxeiner, Andreas
    Erb-Eigner, Katharina
    Makowski, Marcus R.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [15] Interim Results of a Prospective Prostate-Specific Membrane Antigen-Directed Focal Stereotactic Reirradiation Trial for Locally Recurrent Prostate Cancer
    Bergamin, Sarah
    Eade, Thomas
    Kneebone, Andrew
    Booth, Jeremy
    Hsiao, Edward
    Schembri, Geoffrey P.
    Szymura, Kathryn
    Le, Andrew
    Kwong, Carol
    Brown, Chris
    Hunter, Julia
    Hruby, George
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (05): : 1172 - 1178
  • [16] DCE MRI of prostate cancer
    Berman, Rose M.
    Brown, Anna M.
    Chang, Silvia D.
    Sankineni, Sandeep
    Kadakia, Meet
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. ABDOMINAL RADIOLOGY, 2016, 41 (05) : 844 - 853
  • [17] The evaluation of prostate lesions with IVIM DWI and MR perfusion parameters at 3T MRI
    Beyhan, Murat
    Sade, Recep
    Koc, Erdem
    Adanur, Senol
    Kantarci, Mecit
    [J]. RADIOLOGIA MEDICA, 2019, 124 (02): : 87 - 93
  • [18] Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values
    Bonekamp, David
    Kohl, Simon
    Wiesenfarth, Manuel
    Schelb, Patrick
    Radtke, Jan Philipp
    Goetz, Michael
    Kickingereder, Philipp
    Yaqubi, Kaneschka
    Hitthaler, Bertram
    Gaehlert, Nils
    Kuder, Tristan Anselm
    Deister, Fenja
    Freitag, Martin
    Hohenfellner, Markus
    Hadaschik, Boris A.
    Schlemmer, Heinz-Peter
    Maier-Hein, Klaus H.
    [J]. RADIOLOGY, 2018, 289 (01) : 128 - 137
  • [19] Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI
    Buckley, DL
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (03) : 601 - 606
  • [20] Probing structure of normal and malignant prostate tissue before and after radiation therapy with luminal water fraction and diffusion-weighted MRI
    Carlin, Dominic
    Orton, Matthew R.
    Collins, David
    deSouza, Nandita M.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (02) : 619 - 627