Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment

被引:5
作者
Wang, Yu-Feng [1 ,2 ]
Tadimalla, Sirisha [1 ]
Hayden, Amy J. [3 ,4 ,5 ]
Holloway, Lois [1 ,2 ,6 ]
Haworth, Annette [1 ]
机构
[1] Univ Sydney, Fac Sci, Sch Phys, Inst Med Phys, Sydney, NSW, Australia
[2] Ingham Inst Appl Med Res, Liverpool, NSW, Australia
[3] Westmead Hosp, Sydney West Radiat Oncol, Wentworthville, NSW, Australia
[4] Western Sydney Univ, Fac Med, Sydney, NSW, Australia
[5] Macquarie Univ, Fac Med Hlth & Human Sci, Sydney, NSW, Australia
[6] Liverpool Hosp, Liverpool & Macarthur Canc Therapy Ctr, Liverpool, NSW, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
artificial intelligence; local relapse; magnetic resonance imaging; prostate cancer; quantitative imaging biomarkers; radiation therapy; APPARENT DIFFUSION-COEFFICIENT; CONTRAST-ENHANCED MRI; ANDROGEN-DEPRIVATION THERAPY; DOSE-RATE BRACHYTHERAPY; EXTERNAL-BEAM RADIOTHERAPY; LOCAL RECURRENCE; PERIPHERAL ZONE; WEIGHTED MRI; RADICAL PROSTATECTOMY; MULTIPARAMETRIC MRI;
D O I
10.1111/1754-9485.13242
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
引用
收藏
页码:612 / 626
页数:15
相关论文
共 197 条
  • [1] Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer
    Abdollahi, Hamid
    Mofid, Bahram
    Shiri, Isaac
    Razzaghdoust, Abolfazl
    Saadipoor, Afshin
    Mahdavi, Arash
    Galandooz, Hassan Maleki
    Mahdavi, Seied Rabi
    [J]. RADIOLOGIA MEDICA, 2019, 124 (06): : 555 - 567
  • [2] Predictive role of PI-RADSv2 and ADC parameters in differentiating Gleason pattern 3+4 and 4+3 prostate cancer
    Alessandrino, Francesco
    Taghipour, Mehdi
    Hassanzadeh, Elmira
    Ziaei, Alireza
    Vangel, Mark
    Fedorov, Andriy
    Tempany, Clare M.
    Fennessy, Fiona M.
    [J]. ABDOMINAL RADIOLOGY, 2019, 44 (01) : 279 - 285
  • [3] Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings
    Algohary, Ahmad
    Viswanath, Satish
    Shiradkar, Rakesh
    Ghose, Soumya
    Pahwa, Shivani
    Moses, Daniel
    Jambor, Ivan
    Shnier, Ronald
    Bohm, Maret
    Haynes, Anne-Maree
    Brenner, Phillip
    Delprado, Warick
    Thompson, James
    Pulbrock, Marley
    Purysko, Andrei S.
    Verma, Sadhna
    Ponsky, Lee
    Stricker, Phillip
    Madabhushi, Anant
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) : 818 - 828
  • [4] Alonzi R., 2008, P ISMRM
  • [5] Dynamic contrast enhanced MRI in prostate cancer
    Alonzi, Roberto
    Padhani, Anwar R.
    Allen, Clare
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2007, 63 (03) : 335 - 350
  • [6] ANTIVASCULAR EFFECTS OF NEOADJUVANT ANDROGEN DEPRIVATION FOR PROSTATE CANCER: AN IN VIVO HUMAN STUDY USING SUSCEPTIBILITY AND RELAXIVITY DYNAMIC MRI
    Alonzi, Roberto
    Padhani, Anwar R.
    Taylor, N. Jane
    Collins, David J.
    D'Arcy, James A.
    Stirling, J. James
    Saunders, Michele I.
    Hoskin, Peter J.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 80 (03): : 721 - 727
  • [7] Reproducibility and Correlation Between Quantitative and Semiquantitative Dynamic and Intrinsic Susceptibility-Weighted MRI Parameters in the Benign and Malignant Human Prostate
    Alonzi, Roberto
    Taylor, N. Jane
    Stirling, J. James
    d'Arcy, James A.
    Collins, David J.
    Saunders, Michele I.
    Hoskin, Peter J.
    Padhani, Anwar R.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (01) : 155 - 164
  • [8] Detection of locally radio-recurrent prostate cancer at multiparametric MRI: Can dynamic contrast-enhanced imaging be omitted?
    Alonzo, F.
    Melodelima, C.
    Bratan, F.
    Vitry, T.
    Crouzet, S.
    Gelet, A.
    Rouviere, O.
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2016, 97 (04) : 433 - 441
  • [9] Does Local Recurrence of Prostate Cancer After Radiation Therapy Occur at the Site of Primary Tumor? Results of a Longitudinal MRI and MRSI Study
    Arrayeh, Elnasif
    Westphalen, Antonio C.
    Kurhanewicz, John
    Roach, Mack, III
    Jung, Adam J.
    Carroll, Peter R.
    Coakley, Fergus V.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 82 (05): : E787 - E793
  • [10] Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE-MRI: Results from a multicenter phantom study
    Bane, Octavia
    Hectors, Stefanie J.
    Wagner, Mathilde
    Arlinghaus, Lori L.
    Aryal, Madhava P.
    Cao, Yue
    Chenevert, Thomas L.
    Fennessy, Fiona
    Huang, Wei
    Hylton, Nola M.
    Kalpathy-Cramer, Jayashree
    Keenan, Kathryn E.
    Malyarenko, Dariya I.
    Mulkern, Robert V.
    Newitt, David C.
    Russek, Stephen E.
    Stupic, Karl F.
    Tudorica, Alina
    Wilmes, Lisa J.
    Yankeelov, Thomas E.
    Yen, Yi-Fei
    Boss, Michael A.
    Taouli, Bachir
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (05) : 2564 - 2575