Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces

被引:25
作者
Giri, Ashutosh [1 ]
Hopkins, Patrick E. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
关键词
ORGANIC RANKINE-CYCLE; MOLECULAR-DYNAMICS; WORKING FLUIDS; KAPITZA CONDUCTANCE; ENERGY; HEAT; TEMPERATURE; CONDUCTIVITY; TRANSMISSION; EVAPORATION;
D O I
10.1063/1.4942432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop an analytical model for the thermal boundary conductance between a solid and a gas. By considering the thermal fluxes in the solid and the gas, we describe the transmission of energy across the solid/gas interface with diffuse mismatch theory. From the predicted thermal boundary conductances across solid/gas interfaces, the equilibrium thermal accommodation coefficient is determined and compared to predictions from molecular dynamics simulations on the model solid-gas systems. We show that our model is applicable for modeling the thermal accommodation of gases on solid surfaces at non-cryogenic temperatures and relatively strong solid-gas interactions (epsilon(sf) greater than or similar to k(B)T). (C) 2016 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
[Anonymous], 1986, INTRO PHYS GAS DYNAM
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]  
Bruch V.L., 1994, ASSESSMENT RES DEV L
[4]   MIXTURE RULES FOR MIE (N, 6) INTERMOLECULAR PAIR POTENTIAL AND DYMOND-ALDER PAIR POTENTIAL [J].
CALVIN, DW ;
REED, TM .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (09) :3733-&
[5]   A review of heat pipe systems for heat recovery and renewable energy applications [J].
Chaudhry, Hassam Nasarullah ;
Hughes, Ben Richard ;
Ghani, Saud Abdul .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (04) :2249-2259
[6]   Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory [J].
Cheaito, Ramez ;
Gaskins, John T. ;
Caplan, Matthew E. ;
Donovan, Brian F. ;
Foley, Brian M. ;
Giri, Ashutosh ;
Duda, John C. ;
Szwejkowski, Chester J. ;
Constantin, Costel ;
Brown-Shaklee, Harlan J. ;
Ihlefeld, Jon F. ;
Hopkins, Patrick E. .
PHYSICAL REVIEW B, 2015, 91 (03)
[7]   Minimum superlattice thermal conductivity from molecular dynamics [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Ni, ZH ;
Chen, MH .
PHYSICAL REVIEW B, 2005, 72 (17)
[8]   Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires [J].
Chen, YF ;
Li, DY ;
Yang, JK ;
Wu, YH ;
Lukes, JR ;
Majumdar, A .
PHYSICA B-CONDENSED MATTER, 2004, 349 (1-4) :270-280
[9]   Thermal accommodation coefficients for laser-induced incandescence sizing of metal nanoparticles in monatomic gases [J].
Daun, K. J. ;
Sipkens, T. A. ;
Titantah, J. T. ;
Karttunen, M. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 112 (03) :409-420
[10]   Molecular dynamics simulations of translational thermal accommodation coefficients for time-resolved LII [J].
Daun, K. J. ;
Smallwood, G. J. ;
Liu, F. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 94 (01) :39-49