InceptionGCN: Receptive Field Aware Graph Convolutional Network for Disease Prediction

被引:103
作者
Kazi, Anees [1 ]
Shekarforoush, Shayan [2 ]
Krishna, S. Arvind [3 ]
Burwinkel, Hendrik [1 ]
Vivar, Gerome [1 ,4 ]
Kortum, Karsten [5 ]
Ahmadi, Seyed-Ahmad [4 ]
Albarqouni, Shadi [1 ]
Navab, Nassir [1 ,6 ]
机构
[1] Tech Univ Munich, CAMP, Munich, Germany
[2] Sharif Univ Technol, Tehran, Iran
[3] Natl Inst Technol Tiruchirappalli, Dept Comp Sci & Engn, Tiruchirappalli, Tamil Nadu, India
[4] Ludwig Maximilians Univ Munchen, German Ctr Vertigo & Balance Disorders, Munich, Germany
[5] Klinikum Univ Munchen, Augenklin Univ, Munich, Germany
[6] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019 | 2019年 / 11492卷
关键词
D O I
10.1007/978-3-030-20351-1_6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Geometric deep learning provides a principled and versatile manner for integration of imaging and non-imaging modalities in the medical domain. Graph Convolutional Networks (GCNs) in particular have been explored on a wide variety of problems such as disease prediction, segmentation, and matrix completion by leveraging large, multi-modal datasets. In this paper, we introduce a new spectral domain architecture for deep learning on graphs for disease prediction. The novelty lies in defining geometric 'inception modules' which are capable of capturing intra- and inter-graph structural heterogeneity during convolutions. We design filters with different kernel sizes to build our architecture. We show our disease prediction results on two publicly available datasets. Further, we provide insights on the behaviour of regular GCNs and our proposed model under varying input scenarios on simulated data.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 16 条
  • [1] Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
    Abraham, Alexandre
    Milham, Michael P.
    Di Martino, Adriana
    Craddock, R. Cameron
    Samaras, Dimitris
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. NEUROIMAGE, 2017, 147 : 736 - 745
  • [2] [Anonymous], 2018, ARXIV180200910
  • [3] [Anonymous], 2018, ARXIV180410850
  • [4] [Anonymous], ARXIV180410776
  • [5] Bron E.E., 2018, ARXIV180503909
  • [6] Defferrard M., 2016, P ADV NEUR INF PROC, P3844
  • [7] Gansner Emden R., 2013, Graph Drawing. 21st International Symposium, GD 2013. Revised Selected Papers: LNCS 8242, P268, DOI 10.1007/978-3-319-03841-4_24
  • [8] Hamilton WL, 2017, ADV NEUR IN, V30
  • [9] Wavelets on graphs via spectral graph theory
    Hammond, David K.
    Vandergheynst, Pierre
    Gribonval, Remi
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 30 (02) : 129 - 150
  • [10] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269