THE REDUCTION OF THE WRONSKIAN SOLUTIONS OF THE MODIFIED KP HIERARCHY TO ITS CONSTRAINED CASE

被引:0
作者
Chen, Huizhan [1 ]
Geng, Lumin [1 ]
Cheng, Jipeng [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
来源
ROMANIAN JOURNAL OF PHYSICS | 2019年 / 64卷 / 7-8期
基金
中国博士后科学基金;
关键词
constrained mKP hierarchy; Wronskian solutions; tau functions; SQUARED EIGENFUNCTION SYMMETRIES; GAUGE TRANSFORMATION; SOLITONS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give a sufficient and necessary condition to reduce the modified Kadomtsev-Petviashvili (KP) hierarchy obtained by the Wronskian solutions to a M-constrained modified KP hierarchy. An illustrative example for M = 1 is also given.
引用
收藏
页数:11
相关论文
共 26 条
[1]   Bilinear identities for the constrained modified KP hierarchy [J].
Chen, Huizhan ;
Geng, Lumin ;
Li, Na ;
Cheng, Jipeng .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (02) :240-254
[2]   Solving the constrained modified KP hierarchy by gauge transformations [J].
Chen, Huizhan ;
Geng, Lumin ;
Li, Na ;
Cheng, Jipeng .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (01) :54-68
[3]  
Chen SH, 2018, ROM REP PHYS, V70
[4]   Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems [J].
Chen, Shihua ;
Baronio, Fabio ;
Soto-Crespo, Jose M. ;
Grelu, Philippe ;
Mihalache, Dumitru .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (46)
[5]   On the modified KP hierarchy: Tau functions, squared eigenfunction symmetries and additional symmetries [J].
Cheng, Jipeng ;
Li, Maohua ;
Tian, Kelei .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 134 :19-37
[6]   The gauge transformation of the modified KP hierarchy [J].
Cheng J. .
Journal of Nonlinear Mathematical Physics, 2018, 25 (1) :66-85
[7]   MODIFYING THE KP, THE N(TH) CONSTRAINED KP HIERARCHIES AND THEIR HAMILTONIAN STRUCTURES [J].
CHENG, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) :661-682
[8]   Modified KP and discrete KP [J].
Dickey, LA .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (03) :277-289
[9]   The determinant representation of the gauge transformation operators [J].
He, JS ;
Li, YS ;
Cheng, Y .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (04) :475-486
[10]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001