Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma's grade and IDH status

被引:29
作者
De Looze, Celine [1 ,2 ]
Beausang, Alan [3 ]
Cryan, Jane [3 ]
Loftus, Teresa [4 ]
Buckley, Patrick G. [4 ,5 ]
Farrell, Michael [3 ]
Looby, Seamus [6 ]
Reilly, Richard [1 ,7 ,8 ]
Brett, Francesca [3 ]
Kearney, Hugh [3 ]
机构
[1] Trinity Coll Dublin, Trinity Ctr Bioengn, Dublin, Ireland
[2] Trinity Coll Dublin, Sch Engn, Dublin, Ireland
[3] Beaumont Hosp, Dept Neuropathol, Dublin, Ireland
[4] Beaumont Hosp, Dept Mol Pathol, Dublin, Ireland
[5] Genom Med Ireland, Dublin, Ireland
[6] Beaumont Hosp, Dept Neuroradiol, Dublin, Ireland
[7] Trinity Coll Dublin, Inst Neurosci, Dublin, Ireland
[8] Trinity Coll Dublin, Sch Med, Dublin, Ireland
关键词
Diagnostic accuracy; Machine learning; Glioma; Random forest; MRI; CENTRAL-NERVOUS-SYSTEM; TUMOR GRADE; CLASSIFICATION; BRAIN; SURVIVAL; DIFFERENTIATION; GLIOBLASTOMA; DIFFUSION; PREDICTION; MUTATIONS;
D O I
10.1007/s11060-018-2895-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Machine learning methods have been introduced as a computer aided diagnostic tool, with applications to glioma characterisation on MRI. Such an algorithmic approach may provide a useful adjunct for a rapid and accurate diagnosis of a glioma. The aim of this study is to devise a machine learning algorithm that may be used by radiologists in routine practice to aid diagnosis of both: WHO grade and IDH mutation status in de novo gliomas. To evaluate the status quo, we interrogated the accuracy of neuroradiology reports in relation to WHO grade: grade II 96.49% (95% confidence intervals [CI] 0.88, 0.99); III 36.51% (95% CI 0.24, 0.50); IV 72.9% (95% CI 0.67, 0.78). We derived five MRI parameters from the same diagnostic brain scans, in under two minutes per case, and then supplied these data to a random forest algorithm. Machine learning resulted in a high level of accuracy in prediction of tumour grade: grade II/III; area under the receiver operating characteristic curve (AUC) = 98%, sensitivity = 0.82, specificity = 0.94; grade II/IV; AUC = 100%, sensitivity = 1.0, specificity = 1.0; grade III/IV; AUC = 97%, sensitivity = 0.83, specificity = 0.97. Furthermore, machine learning also facilitated the discrimination of IDH status: AUC of 88%, sensitivity = 0.81, specificity = 0.77. These data demonstrate the ability of machine learning to accurately classify diffuse gliomas by both WHO grade and IDH status from routine MRI alone-without significant image processing, which may facilitate usage as a diagnostic adjunct in clinical practice.
引用
收藏
页码:491 / 499
页数:9
相关论文
共 48 条
[1]   Development of a robust and sensitive pyrosequencing assay for the detection of IDH1/2 mutations in gliomas [J].
Arita, Hideyuki ;
Narita, Yoshitaka ;
Matsushita, Yuko ;
Fukushima, Shintaro ;
Yoshida, Akihiko ;
Takami, Hirokazu ;
Miyakita, Yasuji ;
Ohno, Makoto ;
Shibui, Soichiro ;
Ichimura, Koichi .
BRAIN TUMOR PATHOLOGY, 2015, 32 (01) :22-30
[2]   CEREBRAL BLOOD-VOLUME MAPS OF GLIOMAS - COMPARISON WITH TUMOR GRADE AND HISTOLOGIC-FINDINGS [J].
ARONEN, HJ ;
GAZIT, IE ;
LOUIS, DN ;
BUCHBINDER, BR ;
PARDO, FS ;
WEISSKOFF, RM ;
HARSH, GR ;
COSGROVE, GR ;
HALPERN, EF ;
HOCHBERG, FH ;
ROSEN, BR .
RADIOLOGY, 1994, 191 (01) :41-51
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]   IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection [J].
Beiko, Jason ;
Suki, Dima ;
Hess, Kenneth R. ;
Fox, Benjamin D. ;
Cheung, Vincent ;
Cabral, Matthew ;
Shonka, Nicole ;
Gilbert, Mark R. ;
Sawaya, Raymond ;
Prabhu, Sujit S. ;
Weinberg, Jeffrey ;
Lang, Frederick F. ;
Aldape, Kenneth D. ;
Sulman, Erik P. ;
Rao, Ganesh ;
McCutcheon, Ian E. ;
Cahill, Daniel P. .
NEURO-ONCOLOGY, 2014, 16 (01) :81-91
[5]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[6]   Highly specific determination of IDH status using edited in vivo magnetic resonance spectroscopy [J].
Branzoli, Francesca ;
Di Stefano, Anna Luisa ;
Capelle, Laurent ;
Ottolenghi, Chris ;
Valabregue, Romain ;
Deelchand, Dinesh K. ;
Bielle, Franck ;
Villa, Chiara ;
Baussart, Bertrand ;
Lehericy, Stephane ;
Sanson, Marc ;
Marjanska, Malgorzata .
NEURO-ONCOLOGY, 2018, 20 (07) :907-916
[7]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[8]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[9]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[10]  
Delfanti RL, 2017, J NEURO-ONCOL, V135, P601, DOI 10.1007/s11060-017-2613-7