Multiplicity of positive solutions to second-order singular differential equations with a parameter

被引:20
作者
Li, Shengjun [1 ,2 ]
Liao, Fang-fang [3 ]
Zhu, Hailong [4 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Hainan Univ, Dept Math, Haikou 570228, Peoples R China
[3] Nanjing Coll Informat Technol, Nanjing 210046, Jiangsu, Peoples R China
[4] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Peoples R China
基金
中国国家自然科学基金;
关键词
positive solutions; singular; Guo-Krasnosel'skii fixed point theorem; FIXED-POINT THEOREM; PERIODIC-SOLUTIONS; SYSTEMS; EXISTENCE;
D O I
10.1186/1687-2770-2014-115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and multiplicity of positive periodic solutions for second-order nonlinear damped differential equations by combing the analysis of positiveness of the Green function for a linear damped equation. Our nonlinearity may be singular in its dependent variable. The proof of the main result relies on the Guo-Krasnosel'skii fixed point theorem on compression and expansion of cones.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
Bonheure D., 2003, TOPOL METHOD NONL AN, V22, P297
[2]   New criteria for the existence of non-trivial fixed points in cones [J].
Cabada, Alberto ;
Angel Cid, Jose ;
Infante, Gennaro .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[3]   A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential [J].
Cabada, Alberto ;
Cid, Jose Angel ;
Tvrdy, Milan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) :3436-3446
[4]   MAXIMUM PRINCIPLES AROUND AN EIGENVALUE WITH CONSTANT EIGENFUNCTIONS [J].
Campos, J. ;
Mawhin, J. ;
Ortega, R. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (06) :1243-1259
[5]   Multiplicity of positive periodic solutions to second order differential equations [J].
Chu, JF ;
Lin, XN ;
Jiang, DQ ;
O'Regan, D ;
Agarwal, RP .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (02) :175-182
[6]   Applications of Schauder's fixed point theorem to singular differential equations [J].
Chu, Jifeng ;
Torres, Pedro J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :653-660
[7]   INFINITELY MANY T-PERIODIC SOLUTIONS FOR A PROBLEM ARISING IN NONLINEAR ELASTICITY [J].
DELPINO, MA ;
MANASEVICH, RF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :260-277
[8]  
Franco D, 2008, P AM MATH SOC, V136, P1229
[9]   CONSERVATIVE DYNAMICAL-SYSTEMS INVOLVING STRONG FORCES [J].
GORDON, WB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :113-135
[10]  
Guo D., 1988, NONLINEAR PROBLEMS A