Multiplicity of positive solutions to second-order singular differential equations with a parameter

被引:20
作者
Li, Shengjun [1 ,2 ]
Liao, Fang-fang [3 ]
Zhu, Hailong [4 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Hainan Univ, Dept Math, Haikou 570228, Peoples R China
[3] Nanjing Coll Informat Technol, Nanjing 210046, Jiangsu, Peoples R China
[4] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2014年
基金
中国国家自然科学基金;
关键词
positive solutions; singular; Guo-Krasnosel'skii fixed point theorem; FIXED-POINT THEOREM; PERIODIC-SOLUTIONS; SYSTEMS; EXISTENCE;
D O I
10.1186/1687-2770-2014-115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and multiplicity of positive periodic solutions for second-order nonlinear damped differential equations by combing the analysis of positiveness of the Green function for a linear damped equation. Our nonlinearity may be singular in its dependent variable. The proof of the main result relies on the Guo-Krasnosel'skii fixed point theorem on compression and expansion of cones.
引用
收藏
页数:12
相关论文
共 22 条
  • [1] Bonheure D., 2003, TOPOL METHOD NONL AN, V22, P297
  • [2] New criteria for the existence of non-trivial fixed points in cones
    Cabada, Alberto
    Angel Cid, Jose
    Infante, Gennaro
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [3] A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential
    Cabada, Alberto
    Cid, Jose Angel
    Tvrdy, Milan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) : 3436 - 3446
  • [4] MAXIMUM PRINCIPLES AROUND AN EIGENVALUE WITH CONSTANT EIGENFUNCTIONS
    Campos, J.
    Mawhin, J.
    Ortega, R.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (06) : 1243 - 1259
  • [5] Multiplicity of positive periodic solutions to second order differential equations
    Chu, JF
    Lin, XN
    Jiang, DQ
    O'Regan, D
    Agarwal, RP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (02) : 175 - 182
  • [6] Applications of Schauder's fixed point theorem to singular differential equations
    Chu, Jifeng
    Torres, Pedro J.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 653 - 660
  • [7] INFINITELY MANY T-PERIODIC SOLUTIONS FOR A PROBLEM ARISING IN NONLINEAR ELASTICITY
    DELPINO, MA
    MANASEVICH, RF
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) : 260 - 277
  • [8] Franco D, 2008, P AM MATH SOC, V136, P1229
  • [9] CONSERVATIVE DYNAMICAL-SYSTEMS INVOLVING STRONG FORCES
    GORDON, WB
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) : 113 - 135
  • [10] Guo D., 1988, NONLINEAR PROBLEMS A