First Law of Holographic Complexity

被引:68
作者
Bernamonti, Alice [1 ,2 ,3 ]
Galli, Federico [1 ]
Hernandez, Juan [1 ,4 ]
Myers, Robert C. [1 ]
Ruan, Shan-Ming [1 ,4 ]
Simon, Joan [5 ,6 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Firenze, Dipartimento Fis, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[3] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[4] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[5] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[6] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Midlothian, Scotland
基金
加拿大自然科学与工程研究理事会; 英国科学技术设施理事会;
关键词
QUANTUM; ENTANGLEMENT; GEOMETRY;
D O I
10.1103/PhysRevLett.123.081601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity = action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".
引用
收藏
页数:7
相关论文
共 104 条
[101]   AdS/CFT correspondence in operator formalism [J].
Terashima, Seiji .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02)
[102]  
Watrous John, 2009, Encyclopedia of Complexity and Systems Science, P7174, DOI DOI 10.1007/978-0-387-30440-3428
[103]   ROLE OF CONFORMAL 3 GEOMETRY IN DYNAMICS OF GRAVITATION [J].
YORK, JW .
PHYSICAL REVIEW LETTERS, 1972, 28 (16) :1082-&
[104]   Uncomplexity and black hole geometry [J].
Zhao, Ying .
PHYSICAL REVIEW D, 2018, 97 (12)