Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrodinger equation

被引:65
作者
Peng, Wei-Qi
Tian, Shou-Fu [1 ]
Zhang, Tian-Tian
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
KUNDU-ECKHAUS EQUATION; DE-VRIES EQUATION; DARBOUX TRANSFORMATION; SOLITARY WAVE; DISPERSION; SOLITONS;
D O I
10.1209/0295-5075/123/50005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a coupled nonlinear Schrodinger (NLS) equation, which can be reduced to the generalized NLS equation by constituting a certain constraint. We first construct a generalized Darboux transformation (DT) for the coupled NLS equation. Then, by using the resulting DT, we analyse the solutions with vanishing boundary condition and non-vanishing boundary condition, respectively, including positon wave, breather wave and higher-order rogue wave solutions for the coupled NLS equation. Moreover, in order to better understand the dynamic behavior, the characteristics of these solutions are discussed through some diverting graphics under different parameters choices. Copyright (C) EPLA, 2018
引用
收藏
页数:6
相关论文
共 44 条
[1]  
Agrawal G. P., 1995, NONLINEAR FIBER OPTI
[2]   Rogue Waves Emerging from the Resonant Interaction of Three Waves [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara .
PHYSICAL REVIEW LETTERS, 2013, 111 (11)
[3]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[4]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[5]   Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrodinger equation with distributed coefficients [J].
Dai, Chao-Qing ;
Zhu, Shi-Qun ;
Wang, Liang-Liang ;
Zhang, Jie-Fang .
EPL, 2010, 92 (02)
[6]   Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation [J].
Dong, Min-Jie ;
Tian, Shou-Fu ;
Yan, Xue-Wei ;
Zou, Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) :957-964
[7]  
Draper L., 1965, APPLIED REGRESSION A, V35, P193, DOI DOI 10.1002/J.1477-8696.1966.TB05176.X
[8]  
Dudley JM, 2014, NAT PHOTONICS, V8, DOI [10.1038/nphoton.2014.220, 10.1038/NPHOTON.2014.220]
[9]   Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation [J].
Feng, Lian-Li ;
Zhang, Tian-Tian .
APPLIED MATHEMATICS LETTERS, 2018, 78 :133-140
[10]   Darboux transformation and soliton solutions for generalized nonlinear Schrodinger equations [J].
Geng, XG ;
Tam, HW .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (05) :1508-1512