Role of Wnt11 during Osteogenic Differentiation of Human Mesenchymal Stem Cells on Microstructured Titanium Surfaces

被引:30
作者
Boyan, Barbara D. [1 ,2 ]
Olivares-Navarrete, Rene [1 ]
Berger, Michael B. [1 ]
Hyzy, Sharon L. [1 ]
Schwartz, Zvi [1 ,3 ]
机构
[1] Virginia Commonwealth Univ, Sch Engn, Dept Biomed Engn, Richmond, VA 23284 USA
[2] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Univ Texas Hlth Sci Ctr San Antonio, Dept Periodont, San Antonio, TX 78229 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家卫生研究院;
关键词
IN-VITRO; OSTEOBLAST; PROLIFERATION; EXTENSION; CONVERGENCE; MECHANISMS; INTERACT; PATHWAY; GROUCHO; ENERGY;
D O I
10.1038/s41598-018-26901-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Successful osseointegration of an endosseous implant involves migration and differentiation of mesenchymal stem cells (MSCs) on the implant surface. Micro-structured, hydrophilic titanium surfaces direct MSCs to undergo osteoblastic differentiation in vitro, in the absence of media additives commonly used in cultures grown on tissue culture polystyrene (TCPS). This process involves non-canonical Wnt5a, in contrast to canonical Wnt3a typically credited with osteoblastic differentiation on TCPS. Wnt proteins have been implicated in morphological development and tissue patterning, suggesting that additional Wnts may participate. Here, we demonstrate that Wnt11 is a mediator of osteoblast commitment of MSCs, and increases in a surface-roughness dependent manner. Experiments using cells silenced for Wnt11 indicate that cross-talk between Wnt5a and Wnt11 occurs. Wnt11 potentially acts upstream to Wnt5a, increasing Wnt5a expression and factors associated with osteogenesis. Thus, Wnt11 contributes to peri-implant bone formation distal to the implant surface through a heavily regulated signaling cascade of autocrine/paracrine proteins.
引用
收藏
页数:11
相关论文
共 45 条
  • [1] Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells
    Boland, GM
    Perkins, G
    Hall, DJ
    Tuan, RS
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 93 (06) : 1210 - 1230
  • [2] Boyan B D, 2016, Adv Dent Res, V28, P10, DOI 10.1177/0022034515624444
  • [3] Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography
    Boyan, BD
    Bonewald, LF
    Paschalis, EP
    Lohmann, CH
    Rosser, J
    Cochran, DL
    Dean, DD
    Schwartz, Z
    Boskey, AL
    [J]. CALCIFIED TISSUE INTERNATIONAL, 2002, 71 (06) : 519 - 529
  • [4] Wnt signaling: a common theme in animal development
    Cadigan, KM
    Nusse, R
    [J]. GENES & DEVELOPMENT, 1997, 11 (24) : 3286 - 3305
  • [5] Drosophila Tcf and Groucho interact to repress Wingless signalling activity
    Cavallo, RA
    Cox, RT
    Moline, MM
    Roose, J
    Polevoy, GA
    Clevers, H
    Peifer, M
    Bejsovec, A
    [J]. NATURE, 1998, 395 (6702) : 604 - 608
  • [6] Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation
    Cha, Sang-Wook
    Tadjuidje, Emmanuel
    Tao, Qinghua
    Wylie, Christopher
    Heasman, Janet
    [J]. DEVELOPMENT, 2008, 135 (22): : 3719 - 3729
  • [7] A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development
    Chen, GQ
    Fernandez, J
    Mische, S
    Courey, AJ
    [J]. GENES & DEVELOPMENT, 1999, 13 (17) : 2218 - 2230
  • [8] Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective
    Cho, Sung-Jin
    Valles, Yvonne
    Giani, Vincent C., Jr.
    Seaver, Elaine C.
    Weisblat, David A.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (07) : 1645 - 1658
  • [9] Christiansen JH, 1996, ONCOGENE, V12, P2705
  • [10] Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
    Day, TF
    Guo, XZ
    Garrett-Beal, L
    Yang, YZ
    [J]. DEVELOPMENTAL CELL, 2005, 8 (05) : 739 - 750