Average adjacencies for tetrahedral skeleton-regular partitions

被引:4
作者
Plaza, A [1 ]
Rivara, MC
机构
[1] ULPGC, Dept Math, Las Palmas Gran Canaria 35017, Spain
[2] Univ Chile, Dept Comp Sci, Santiago, Chile
关键词
partitions; adjacencies; tetrahedral meshes;
D O I
10.1016/j.cam.2004.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions different values for the asymptotic number of average adjacencies are obtained depending on the considered partition, in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 158
页数:18
相关论文
共 24 条
  • [1] Locally adapted tetrahedral meshes using bisection
    Arnold, DN
    Mukherjee, A
    Pouly, L
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) : 431 - 448
  • [2] Becker E. B., 1981, FINITE ELEMENTS
  • [3] Berger M., 1987, Geometry I
  • [4] Tetrahedral grid refinement
    Bey, J
    [J]. COMPUTING, 1995, 55 (04) : 355 - 378
  • [5] Bey J, 2000, NUMER MATH, V85, P1, DOI 10.1007/s002110000108
  • [6] Carey GF., 1997, S COMP PHYS
  • [7] De Berg M., 2000, COMPUTATIONAL GEOMET, DOI DOI 10.1007/978-3-662-03427-9
  • [8] Freitag LA, 1997, INT J NUMER METH ENG, V40, P3979, DOI 10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO
  • [9] 2-9
  • [10] MESH RELAXATION - A NEW TECHNIQUE FOR IMPROVING TRIANGULATIONS
    FREY, WH
    FIELD, DA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (06) : 1121 - 1133