Asymptotic behavior of positive solutions of some elliptic problems

被引:10
作者
Dancer, EN [1 ]
Du, YH
Ma, L
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ New England, Sch Math & Comp Sci, Armidale, NSW 2351, Australia
[3] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
D O I
10.2140/pjm.2003.210.215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the asymptotic behavior of the positive solutions of the problem -Deltau=au-bu(p), u\(partial derivativeOmega)=0 as p-->1+0 and as p-->infinity. We show that, for each case, the behavior is determined by a limiting problem. Moreover, the limiting problem is of free boundary nature when p-->infinity.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 9 条
[1]  
[Anonymous], WEAKLY DIFFERENTIABL
[2]   Logistic type equations on RN by a squeezing method involving boundary blow-up solutions [J].
Du, YH ;
Ma, L .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :107-124
[3]   Blow-up solutions for a class of semilinear elliptic and parabolic equations [J].
Du, YH ;
Huang, QG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :1-18
[4]   Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation [J].
Fraile, JM ;
Medina, PK ;
LopezGomez, J ;
Merino, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) :295-319
[5]  
Kazdan JL., 1975, J. Differential Geometry, V10, P113, DOI 10.4310/jdg/1214432678
[6]  
Ma L, 1993, MATH ANN, V295, P75, DOI [10.1007/BF01444877, DOI 10.1007/BF01444877]
[7]   Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations [J].
Marcus, M ;
Veron, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :237-274
[9]  
Trudinger NS, 1977, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-96379-7