G2 AND THE ROLLING BALL

被引:25
作者
Baez, John C. [1 ,2 ]
Huerta, John [3 ,4 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Australian Natl Univ, Res Sch Phys & Engn, Dept Theoret Phys, Canberra, ACT 0200, Australia
[4] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
Split G(2); split octonions; rolling ball; (2,3,5) distributions; buildings;
D O I
10.1090/S0002-9947-2014-05977-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Understanding the exceptional Lie groups as the symmetry groups of simpler objects is a long-standing program in mathematics. Here, we explore one famous realization of the smallest exceptional Lie group, G(2). Its Lie algebra g(2) acts locally as the symmetries of a ball rolling on a larger ball, but only when the ratio of radii is 1: 3. Using the split octonions, we devise a similar, but more global, picture of G(2): it acts as the symmetries of a 'spinorial ball rolling on a projective plane', again when the ratio of radii is 1: 3. We explain this ratio in simple terms, use the dot product and cross product of split octonions to describe the G(2) incidence geometry, and show how a form of geometric quantization applied to this geometry lets us recover the imaginary split octonions and these operations.
引用
收藏
页码:5257 / 5293
页数:37
相关论文
共 27 条
[1]  
Abramenko Peter, 2008, GRADUATE TEXTS MATH, V248
[2]  
AGRACHEV ANDREI A., 2007, P STEKLOV I MATH+, V258, P13, DOI [10.1134/S0081543807030030, 10.1134/S0081543807030030.985, DOI 10.1134/S0081543807030030.985]
[3]  
Agricola I., 2008, Notices Amer. Math. Soc., V55, P922
[4]  
[Anonymous], 1908, Ann. Sci. Ecole Norm
[5]  
[Anonymous], 1894, THESIS PARIS
[6]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[7]  
Bor G, 2009, ENSEIGN MATH, V55, P157
[8]   HOMOGENEOUS VECTOR BUNDLES [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1957, 66 (02) :203-248
[9]   RIGIDITY OF INTEGRAL CURVES OF RANK-2 DISTRIBUTIONS [J].
BRYANT, RL ;
HSU, L .
INVENTIONES MATHEMATICAE, 1993, 114 (02) :435-461
[10]  
Bryant RL, 1998, COMMUNICATION 0619