Integral equation models for thermoacoustic imaging of acoustic dissipative tissue

被引:13
作者
Kowar, Richard [1 ]
机构
[1] Univ Innsbruck, Dept Matemat, A-6020 Innsbruck, Austria
关键词
FREQUENCY-DOMAIN RECONSTRUCTION; TOMOGRAPHY; MEDIA;
D O I
10.1088/0266-5611/26/9/095005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main task of thermoacoustic imaging is the estimation of a function, denoted by phi, which depends on the electromagnetic absorption function and the optical scattering properties of the tissue. In the absence of acoustic dissipation, the parameter function phi can be estimated from one of the three types of projections (spherical, circular or planar). In the case of acoustic dissipative wave propagation in tissue, it is no longer possible to explicitly calculate the projection of phi from the respective pressure data (measured by point, planar or line detectors). The goal of this paper is to derive for each of the three types of pressure detectors, an integral equation that allows estimation of the respective projections of phi. The advantage of this approach is that known reconstruction formulas for phi using the respective projection data can then be exploited.
引用
收藏
页数:18
相关论文
共 35 条
[1]   Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors [J].
Burgholzer, P. ;
Bauer-Marschallinger, J. ;
Gruen, H. ;
Haltmeier, M. ;
Paltauf, G. .
INVERSE PROBLEMS, 2007, 23 (06) :S65-S80
[2]   Compensation of acoustic attenuation for high resolution photoacoustic imaging with line detectors [J].
Burgholzer, Peter ;
Gruen, Hubert ;
Haltmeier, Markus ;
Nuster, Robert ;
Paltauf, Guenther .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2007, 2007, 6437
[3]  
Dautray R, 1992, MATH ANAL NUMERICAL
[4]  
Dautray R., 1992, MATH ANAL NUMERICAL
[5]   Determining a function from its mean values over a family of spheres [J].
Finch, D ;
Patch, SK ;
Rakesh .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) :1213-1240
[6]  
Gusev V.E., 1993, Laser Optoacoustics, Vfirst
[7]   Thermoacoustic computed tomography with large planar receivers [J].
Haltmeier, M ;
Scherzer, O ;
Burgholzer, P ;
Paltauf, G .
INVERSE PROBLEMS, 2004, 20 (05) :1663-1673
[8]  
Hofmann B., 1999, Mathematik Inverser Probleme
[9]  
Hormander L, 2003, ANAL LINEAR PARTIAL
[10]   Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media [J].
Hristova, Yulia ;
Kuchment, Peter ;
Nguyen, Linh .
INVERSE PROBLEMS, 2008, 24 (05)