Machine Learning algorithms for air pollutants forecasting

被引:0
作者
Dobrea, Marius [1 ]
Badicu, Andreea [1 ]
Barbu, Marina [1 ]
Subea, Oana [1 ]
Balanescu, Mihaela [1 ]
Suciu, Geroge [1 ]
Birdici, Andrei [1 ]
Orza, Oana [1 ]
Dobre, Ciprian [2 ]
机构
[1] BEIA Consult Int, Res & Dev Dept, Bucharest, Romania
[2] Univ POLITEHNICA, Dept Comp, Bucharest, Romania
来源
2020 IEEE 26TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME 2020) | 2020年
关键词
Machine Learning; Air Pollution; Forecasting; Time Series;
D O I
10.1109/siitme50350.2020.9292238
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Air pollution represents an issue that raises many concerns nowadays, as it has various negative effects on the environment and the economy worldwide. Because of the rapid urbanization, cities are suffering from polluted air, so it is important to predict future air quality. For this purpose, new applications of artificial intelligence should be employed. In this paper, we will present several Machine Learning algorithms, the possible software that can be used for them and the applications used in the field of air quality. Based on the research in the field, we propose SVR, ARIMA and LSTM, 3 Machine Learning models, which can be used to predict air pollution. These algorithms have been tested using time-series for PM10 and PM2.5 particles. The results showed that SVR and ARIMA algorithms are the most suitable in forecasting air pollutant concentrations.
引用
收藏
页码:109 / 113
页数:5
相关论文
共 14 条
  • [1] Athira V., 2018, Procedia Computer Science, V132, P1394, DOI 10.1016/j.procs.2018.05.068
  • [2] A study on data accuracy for IoT measurements of PMs concentration
    Balanescu, Mihaela
    Oprea, Iulia
    Suciu, George
    Dobrea, Marius-Alexandru
    Balaceanu, Cristina
    Ciobanu, Radu-Ioan
    Dobre, Ciprian
    [J]. 2019 22ND INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), 2019, : 182 - 187
  • [3] ARIMA models to predict next-day electricity prices
    Contreras, J
    Espínola, R
    Nogales, FJ
    Conejo, AJ
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (03) : 1014 - 1020
  • [4] Forecast Analysis of Instant Noodle Demand using Support Vector Regression (SVR)
    Fradinata, E.
    Kesuma, Z. M.
    Rusdiana, S.
    Zaman, N.
    [J]. 1ST SOUTH ACEH INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (SAICOET), 2019, 506
  • [5] Learning to forget: Continual prediction with LSTM
    Gers, FA
    Schmidhuber, J
    Cummins, F
    [J]. NEURAL COMPUTATION, 2000, 12 (10) : 2451 - 2471
  • [6] A review on the human health impact of airborne particulate matter
    Kim, Ki-Hyun
    Kabir, Ehsanul
    Kabir, Shamin
    [J]. ENVIRONMENT INTERNATIONAL, 2015, 74 : 136 - 143
  • [7] The Lancet Commission on pollution and health
    Landrigan, Philip J.
    Fuller, Richard
    Acosta, Nereus J. R.
    Adeyi, Olusoji
    Arnold, Robert
    Basu, Niladri
    Balde, Abdoulaye Bibi
    Bertollini, Roberto
    Bose-O'Reilly, Stephan
    Boufford, Jo Ivey
    Breysse, Patrick N.
    Chiles, Thomas
    Mahidol, Chulabhorn
    Coll-Seck, Awa M.
    Cropper, Maureen L.
    Fobil, Julius
    Fuster, Valentin
    Greenstone, Michael
    Haines, Andy
    Hanrahan, David
    Hunter, David
    Khare, Mukesh
    Krupnick, Alan
    Lanphear, Bruce
    Lohani, Bindu
    Martin, Keith
    Mathiasen, Karen V.
    McTeer, Maureen A.
    Murray, Christopher J. L.
    Ndahimananjara, Johanita D.
    Perera, Frederica
    Potocnik, Janez
    Preker, Alexander S.
    Ramesh, Jairam
    Rockstrom, Johan
    Salinas, Carlos
    Samson, Leona D.
    Sandilya, Karti
    Sly, Peter D.
    Smith, Kirk R.
    Steiner, Achim
    Stewart, Richard B.
    Suk, William A.
    van Schayck, Onno C. P.
    Yadama, Gautam N.
    Yumkella, Kandeh
    Zhong, Ma
    [J]. LANCET, 2018, 391 (10119) : 462 - 512
  • [8] Liu C., 2017, 13 AAAI C ART INT FE
  • [9] A Deep Learning Integrated Lee-Carter Model
    Nigri, Andrea
    Levantesi, Susanna
    Marino, Mario
    Scognamiglio, Salvatore
    Perla, Francesca
    [J]. RISKS, 2019, 7 (01)
  • [10] Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece
    Papacharalampous, Georgia
    Tyralis, Hristos
    Koutsoyiannis, Demetris
    [J]. WATER RESOURCES MANAGEMENT, 2018, 32 (15) : 5207 - 5239