Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model

被引:34
作者
Chen, ZM
Elliot, CM
Qi, T
机构
[1] Tech Univ Munich, Lehrstuhl Angew Math, D-80335 Munich, Germany
[2] Univ Sussex, Ctr Math Anal & Its Applicat, Brighton BN1 9QH, E Sussex, England
来源
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1998年 / 32卷 / 01期
关键词
D O I
10.1051/m2an/1998320100251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that a two dimensional evolutionary Ginzburg-Landau superconductivity model is an approximation of a corresponding thin plate three dimensional superconductivity model when the thickness of the plate uniformly approaches zero. Some related topics such as existence of weak solutions to the three dimensional variable thickness model and the convergence when the variable thickness tends to zero are discussed. A numerical experiment using the now model is reported. (C) Elsevier, Paris.
引用
收藏
页码:25 / 50
页数:26
相关论文
共 18 条
  • [1] MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY
    CHAPMAN, SJ
    HOWISON, SD
    OCKENDON, JR
    [J]. SIAM REVIEW, 1992, 34 (04) : 529 - 560
  • [2] Chen Z., 1995, Adv Math Sci Appl, V5, P363
  • [3] ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL
    CHEN, ZM
    HOFFMANN, KH
    LIANG, J
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) : 855 - 875
  • [4] ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY
    DU, Q
    GUNZBURGER, MD
    PETERSON, JS
    [J]. SIAM REVIEW, 1992, 34 (01) : 54 - 81
  • [5] DU Q, IN PRESS MODEL SUPER
  • [6] DU Q, 1994, APPL ANAL, V53, P1
  • [7] Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
  • [8] ELLIOTT CM, 1994, EUR J APPL MATH, V5, P437
  • [9] Girault V., 2012, FINITE ELEMENT METHO, V5
  • [10] GORKOV LP, 1968, ZH EKSP TEOR FIZ, V27, P328