Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM

被引:25
作者
de Carvalho Filho, Antonio Oseas [1 ]
Silva, Aristofanes Correa [1 ]
de Paiva, Anselmo Cardoso [1 ]
Nunes, Rodolfo Acatauassu [2 ]
Gattass, Marcelo [3 ]
机构
[1] Fed Univ Maranho UFMA, Appl Comp Grp NCA, Av Portugueses SN,Campus Bacanga, BR-65085580 Sao Luis, MA, Brazil
[2] Univ Estado Rio De Janeiro, Sao Francisco de Xavier 524, BR-20550900 Rio De Janeiro, RJ, Brazil
[3] Pontifical Catholic Univ Rio de Janeiro PUC Rio, Dept Comp Sci, R Marques de Sao Vicente 225, BR-22453900 Rio De Janeiro, RJ, Brazil
关键词
Lung cancer; Shape analysis; Genetic algorithm; Medical image; PULMONARY NODULES; CANCER;
D O I
10.1007/s11517-016-1577-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lung cancer is the major cause of death among patients with cancer worldwide. This work is intended to develop a methodology for the diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed methodology uses image processing and pattern recognition techniques. To differentiate the patterns of malignant and benign forms, we used a Minkowski functional, distance measures, representation of the vector of points measures, triangulation measures, and Feret diameters. Finally, we applied a genetic algorithm to select the best model and a support vector machine for classification. In the test stage, we applied the proposed methodology to 1405 (394 malignant and 1011 benign) nodules from the LIDC-IDRI database. The proposed methodology shows promising results for diagnosis of malignant and benign forms, achieving accuracy of 93.19 %, sensitivity of 92.75 %, and specificity of 93.33 %. The results are promising and demonstrate a good rate of correct detections using the shape features. Because early detection allows faster therapeutic intervention, and thus a more favorable prognosis for the patient, herein we propose a methodology that contributes to the area.
引用
收藏
页码:1129 / 1146
页数:18
相关论文
共 42 条
  • [31] Parveen SS, 2014, INT J COMPUT APPL, V1, P25
  • [32] Lung cancer imaging
    Patil, Shekhar S.
    Godoy, Myrna C. B.
    Sorensen, James I. L.
    Marom, Edith M.
    [J]. SEMINARS IN DIAGNOSTIC PATHOLOGY, 2014, 31 (04) : 293 - 305
  • [33] Quantifying permafrost patterns using Minkowski densities
    Roth, K
    Boike, J
    Vogel, HJ
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2005, 16 (03) : 277 - 290
  • [34] Differentiation of malignant from benign solitary pulmonary lesions using chest radiography, spiral CT and HRCT
    Seemann, MD
    Seemann, O
    Luboldt, W
    Bonél, H
    Sittek, H
    Dienemann, H
    Staebler, A
    [J]. LUNG CANCER, 2000, 29 (02) : 105 - 124
  • [35] Mass screening for lung cancer with mobile spiral computed tomography scanner
    Sone, S
    Takashima, S
    Li, F
    Yang, ZG
    Honda, T
    Maruyama, Y
    Hasegawa, M
    Yamanda, T
    Kubo, K
    Hanamura, K
    Asakura, K
    [J]. LANCET, 1998, 351 (9111) : 1242 - 1245
  • [36] Stewart, 2014, WORLD CANC REPORT 20
  • [37] Umbaugh SE, 2011, J ELECTRON IMAGING, V1, P901, DOI [10.1117/1.3628179, DOI 10.1117/1.3628179]
  • [38] Receiver operating characteristic (ROC) analysis: Basic principles and applications in radiology
    van Erkel, AR
    Pattynama, PMT
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 1998, 27 (02) : 88 - 94
  • [39] Victor SP, 2011, 2011 THIRD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), P1, DOI 10.1109/ICoAC.2011.6165168
  • [40] Computer-aided diagnosis of pulmonary nodules on CT scans: Improvement of classification performance with nodule surface features
    Way, Ted W.
    Sahiner, Berkman
    Chan, Heang-Ping
    Hadjiiski, Lubomir
    Cascade, Philip N.
    Chughtai, Aamer
    Bogot, Naama
    Kazerooni, Ella
    [J]. MEDICAL PHYSICS, 2009, 36 (07) : 3086 - 3098