Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM

被引:25
作者
de Carvalho Filho, Antonio Oseas [1 ]
Silva, Aristofanes Correa [1 ]
de Paiva, Anselmo Cardoso [1 ]
Nunes, Rodolfo Acatauassu [2 ]
Gattass, Marcelo [3 ]
机构
[1] Fed Univ Maranho UFMA, Appl Comp Grp NCA, Av Portugueses SN,Campus Bacanga, BR-65085580 Sao Luis, MA, Brazil
[2] Univ Estado Rio De Janeiro, Sao Francisco de Xavier 524, BR-20550900 Rio De Janeiro, RJ, Brazil
[3] Pontifical Catholic Univ Rio de Janeiro PUC Rio, Dept Comp Sci, R Marques de Sao Vicente 225, BR-22453900 Rio De Janeiro, RJ, Brazil
关键词
Lung cancer; Shape analysis; Genetic algorithm; Medical image; PULMONARY NODULES; CANCER;
D O I
10.1007/s11517-016-1577-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lung cancer is the major cause of death among patients with cancer worldwide. This work is intended to develop a methodology for the diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed methodology uses image processing and pattern recognition techniques. To differentiate the patterns of malignant and benign forms, we used a Minkowski functional, distance measures, representation of the vector of points measures, triangulation measures, and Feret diameters. Finally, we applied a genetic algorithm to select the best model and a support vector machine for classification. In the test stage, we applied the proposed methodology to 1405 (394 malignant and 1011 benign) nodules from the LIDC-IDRI database. The proposed methodology shows promising results for diagnosis of malignant and benign forms, achieving accuracy of 93.19 %, sensitivity of 92.75 %, and specificity of 93.33 %. The results are promising and demonstrate a good rate of correct detections using the shape features. Because early detection allows faster therapeutic intervention, and thus a more favorable prognosis for the patient, herein we propose a methodology that contributes to the area.
引用
收藏
页码:1129 / 1146
页数:18
相关论文
共 42 条
[31]  
Parveen SS, 2014, INT J COMPUT APPL, V1, P25
[32]   Lung cancer imaging [J].
Patil, Shekhar S. ;
Godoy, Myrna C. B. ;
Sorensen, James I. L. ;
Marom, Edith M. .
SEMINARS IN DIAGNOSTIC PATHOLOGY, 2014, 31 (04) :293-305
[33]   Quantifying permafrost patterns using Minkowski densities [J].
Roth, K ;
Boike, J ;
Vogel, HJ .
PERMAFROST AND PERIGLACIAL PROCESSES, 2005, 16 (03) :277-290
[34]   Differentiation of malignant from benign solitary pulmonary lesions using chest radiography, spiral CT and HRCT [J].
Seemann, MD ;
Seemann, O ;
Luboldt, W ;
Bonél, H ;
Sittek, H ;
Dienemann, H ;
Staebler, A .
LUNG CANCER, 2000, 29 (02) :105-124
[35]   Mass screening for lung cancer with mobile spiral computed tomography scanner [J].
Sone, S ;
Takashima, S ;
Li, F ;
Yang, ZG ;
Honda, T ;
Maruyama, Y ;
Hasegawa, M ;
Yamanda, T ;
Kubo, K ;
Hanamura, K ;
Asakura, K .
LANCET, 1998, 351 (9111) :1242-1245
[36]  
Stewart, 2014, WORLD CANC REPORT 20
[37]  
Umbaugh SE, 2011, J ELECTRON IMAGING, V1, P901, DOI [10.1117/1.3628179, DOI 10.1117/1.3628179]
[38]   Receiver operating characteristic (ROC) analysis: Basic principles and applications in radiology [J].
van Erkel, AR ;
Pattynama, PMT .
EUROPEAN JOURNAL OF RADIOLOGY, 1998, 27 (02) :88-94
[39]  
Victor SP, 2011, 2011 THIRD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), P1, DOI 10.1109/ICoAC.2011.6165168
[40]   Computer-aided diagnosis of pulmonary nodules on CT scans: Improvement of classification performance with nodule surface features [J].
Way, Ted W. ;
Sahiner, Berkman ;
Chan, Heang-Ping ;
Hadjiiski, Lubomir ;
Cascade, Philip N. ;
Chughtai, Aamer ;
Bogot, Naama ;
Kazerooni, Ella .
MEDICAL PHYSICS, 2009, 36 (07) :3086-3098