Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data

被引:0
作者
Kim, SY [1 ]
Imoto, S [1 ]
Miyano, S [1 ]
机构
[1] Univ Tokyo, Inst Med Sci, Ctr Human Genome, Minato Ku, Tokyo 1088639, Japan
来源
COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS | 2003年 / 2602卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as continuous data and can capture even nonlinear relations among genes. It can be expected that this model will give a deeper insight into the complicated biological systems. We also derive a new criterion for evaluating an estimated network from Bayes approach. We demonstrate the effectiveness of our method by analyzing Saccharomyces cerevisiae gene expression data.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 23 条
[1]  
Akaike H., 1973, 2 INT S INF THEOR, P268, DOI 10.1007/978-1-4612-1694-0_15
[2]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[3]  
Bilmes J., 2000, P 16 C UNC ART INT, P38
[4]  
Burnham K. P., 1998, MODEL SELECTION INFE
[5]  
CHEN T, 1999, P PAC S BIOC, V4, P29
[6]  
DAVISON AC, 1986, BIOMETRIKA, V73, P323
[7]  
DEBOOR C, 1978, PRACTIAL GUIDE SPLIN
[8]  
DEHOON MJL, 2003, P PAC S BIOC, V8
[9]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[10]  
DIERCKX P., 1993, Monographs on Numerical Analysis