A divide-and-conquer algorithm for quantum state preparation

被引:124
作者
Araujo, Israel F. [1 ]
Park, Daniel K. [2 ]
Petruccione, Francesco [3 ,4 ,5 ]
da Silva, Adenilton J. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[2] Sungkyunkwan Univ Adv Inst Nanotechnol, Suwon 16419, South Korea
[3] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[4] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, Kwazulu Natal, South Africa
[5] Natl Inst Theoret Phys NITheP, ZA-4001 Durban, Kwazulu Natal, South Africa
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41598-021-85474-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.
引用
收藏
页数:12
相关论文
共 26 条
[1]   Read the fine print [J].
Aaronson, Scott .
NATURE PHYSICS, 2015, 11 (04) :291-293
[2]  
Aleksandrowicz G., 2019, QISKIT OPEN SOURCE F, DOI DOI 10.5281/ZENODO.2562111
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]  
Bergholm V, 2020, Pennylane: Automatic differentiation of hybrid quantum-classical computations
[5]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[6]  
Cohen N, 2016, PR MACH LEARN RES, V48
[7]  
Cormen T.H., 2009, INTRO ALGORITHMS, V3rd
[8]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[9]   Stochastic Quantization for Learning Accurate Low-Bit Deep Neural Networks [J].
Dong, Yinpeng ;
Ni, Renkun ;
Li, Jianguo ;
Chen, Yurong ;
Su, Hang ;
Zhu, Jun .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (11-12) :1629-1642
[10]  
Dua D., 2017, UCI machine learning repository