Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere

被引:76
作者
Yu, Jiayi [1 ,2 ,3 ,4 ]
Huang, Yan [3 ,4 ]
Wang, Fei [3 ,4 ]
Liu, Xianlong [1 ,2 ]
Gbur, Greg [5 ]
Cai, Yangjian [1 ,2 ,3 ,4 ]
机构
[1] Shandong Normal Univ, Shandong Prov Engn & Tech Ctr Light Manipulat, Sch Phys & Elect, Jinan 250014, Shandong, Peoples R China
[2] Shandong Normal Univ, Shandong Prov Key Lab Opt & Photon Device, Sch Phys & Elect, Jinan 250014, Shandong, Peoples R China
[3] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[4] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Thchnol, Suzhou 215006, Peoples R China
[5] Univ North Carolina Charlotte, Dept Phys & Opt Sci, Charlotte, NC 28223 USA
基金
中国国家自然科学基金;
关键词
SCHELL-MODEL BEAMS; POLARIZED BEAM; INTENSITY FLUCTUATIONS; OPTICAL COMMUNICATION; PROPAGATION; REDUCTION; WAVE; TRANSMISSION;
D O I
10.1364/OE.27.026676
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We undertake a computational and experimental study of an advanced class of structured beams, partially coherent radially polarized vortex (PCRPV) beams, on propagation through atmospheric turbulence. A computational propagation model is established to simulate this class of beams, and it is used to calculate the average intensity and on-axis scintillation index of PCRPV beams. On comparison with other classes of structured beams, such as partially coherent vortex beams and partially coherent radially polarized beams, it is found that the PCRPV beams, which structure phase, coherence and polarization simultaneously, show marked improvements in atmospheric propagation. The simulation results agree reasonably well with the experimental results. These beams will be useful in free-space optical communications and remote sensing. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:26676 / 26688
页数:13
相关论文
共 38 条
[1]  
Andrews Larry C., 2005, Laser Beam Propag. Random Media, V2, DOI DOI 10.1117/3.626196
[2]   Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air [J].
Avramov-Zamurovic, S. ;
Nelson, C. ;
Guth, S. ;
Korotkova, O. .
APPLIED OPTICS, 2016, 55 (13) :3442-3446
[3]  
Banakh V. A., 1983, Optics and Spectroscopy, V55, P423
[4]  
Banakh V.A., 1983, OPT SPECTROC, V54, P626
[5]   Computational approaches for generating electromagnetic Gaussian Schell-model sources [J].
Basu, Santasri ;
Hyde, Milo W. ;
Xiao, Xifeng ;
Voelz, David G. ;
Korotkova, Olga .
OPTICS EXPRESS, 2014, 22 (26) :31691-31707
[6]   Scintillation reduction for laser beams propagating through turbulent atmosphere [J].
Berman, G. P. ;
Gorshkov, V. N. ;
Torous, S. V. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (05)
[7]   Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere [J].
Cai, Yangjian ;
Lin, Qiang ;
Eyyuboglu, Halil T. ;
Baykal, Yahya .
OPTICS EXPRESS, 2008, 16 (11) :7665-7673
[8]   Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere [J].
Chen, Rong ;
Dong, Yiming ;
Wang, Fei ;
Cai, Yangjian .
APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 112 (02) :247-259
[9]   Propagation of vector vortex beams through a turbulent atmosphere [J].
Cheng, Wen ;
Haus, Joseph W. ;
Zhan, Qiwen .
OPTICS EXPRESS, 2009, 17 (20) :17829-17836
[10]   Scintillation behaviour of vortex beams in strong turbulence region [J].
Eyyuboglu, H. T. .
JOURNAL OF MODERN OPTICS, 2016, 63 (21) :2374-2381