A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy

被引:128
作者
Ye, Lupeng [1 ,2 ,3 ]
Park, Jonathan J. [1 ,2 ,3 ,4 ,5 ,6 ]
Peng, Lei [1 ,2 ,3 ]
Yang, Quanjun [1 ,2 ,3 ,21 ]
Chow, Ryan D. [1 ,2 ,3 ,4 ,5 ,6 ]
Dong, Matthew B. [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Lam, Stanley Z. [1 ,2 ,3 ,9 ]
Guo, Jianjian [1 ,2 ,3 ,4 ,5 ,6 ]
Tang, Erting [1 ,2 ,3 ]
Zhang, Yueqi [1 ,2 ,3 ]
Wang, Guangchuan [1 ,2 ,3 ]
Dai, Xiaoyun [1 ,2 ,3 ]
Du, Yaying [1 ,2 ,3 ]
Kim, Hyunu R. [1 ,2 ,3 ]
Cao, Hanbing [1 ,2 ,3 ]
Errami, Youssef [1 ,2 ,3 ,22 ]
Clark, Paul [1 ,2 ,3 ]
Bersenev, Alexey [10 ,11 ]
Montgomery, Ruth R. [11 ,12 ,13 ,14 ,15 ,16 ]
Chen, Sidi [1 ,2 ,3 ,5 ,6 ,7 ,15 ,16 ,17 ,18 ,19 ,20 ]
Montgomery, Ruth R. [11 ,12 ,13 ,14 ,15 ,16 ]
Chen, Sidi [1 ,2 ,3 ,5 ,6 ,7 ,15 ,16 ,17 ,18 ,19 ,20 ]
机构
[1] Syst Biol Inst, Integrated Sci & Technol Ctr, West Haven, CT 06516 USA
[2] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06510 USA
[3] Ctr Canc Syst Biol, Integrated Sci & Technol Ctr, West Haven, CT 06516 USA
[4] Yale MD PhD Program, 367 Cedar St, New Haven, CT 06510 USA
[5] Yale Univ, Combined Program Biol & Biomed Sci, New Haven, CT 06510 USA
[6] Yale Univ, MCGD Program, New Haven, CT 06510 USA
[7] Yale Univ, Immunobiol Program, New Haven, CT 06520 USA
[8] Yale Univ, Sch Med, Dept Immunobiol, New Haven, CT 06520 USA
[9] Yale Univ, Coll, New Haven, CT 06520 USA
[10] Yale Univ, Sch Med, Adv Cell Therapy Lab, New Haven, CT 06520 USA
[11] Yale Univ, Sch Med, Dept Lab Med, New Haven, CT 06520 USA
[12] Yale Univ, Sch Publ Hlth, Dept Epidemiol Microbial Dis, New Haven, CT 06520 USA
[13] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06520 USA
[14] Yale Univ, Sch Med, Dept Rheumatol, New Haven, CT 06520 USA
[15] Yale Univ, Sch Med, Ctr Biomed Data Sci, New Haven, CT 06510 USA
[16] Yale Univ, Ctr Comprehens Canc, New Haven, CT 06510 USA
[17] Yale Univ, Sch Med, Dept Neurosurg, New Haven, CT 06510 USA
[18] Yale Univ, Sch Med, Yale Stem Cell Ctr, New Haven, CT 06510 USA
[19] Yale Univ, Sch Med, Yale Liver Ctr, New Haven, CT 06510 USA
[20] Yale Univ, Ctr RNA Sci & Med, New Haven, CT 06510 USA
[21] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Pharm, Shanghai, Peoples R China
[22] Tulane Univ, Dept Surg Oncol, New Orleans, LA 70118 USA
关键词
TUMOR MICROENVIRONMENT; GENE-EXPRESSION; IMMUNE CELLS; IMMUNOTHERAPY; ACTIVATION; TARGET; DISCOVERY; EFFECTOR; METABOANALYST; METABOLOMICS;
D O I
10.1016/j.cmet.2022.02.009
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Chimeric antigen receptor (CAR)-T cell-based immunotherapy for cancer and immunological diseases has made great strides, but it still faces multiple hurdles. Finding the right molecular targets to engineer T cells toward a desired function has broad implications for the armamentarium of T cell-centered therapies. Here, we developed a dead-guide RNA (dgRNA)-based CRISPR activation screen in primary CD8+ T cells and identified gain-of-function (GOF) targets for CAR-T engineering. Targeted knockin or overexpression of a lead target, PRODH2, enhanced CAR-T-based killing and in vivo efficacy in multiple cancer models. Transcriptomics and metabolomics in CAR-T cells revealed that augmenting PRODH2 expression reshaped broad and distinct gene expression and metabolic programs. Mitochondrial, metabolic, and immunological analyses showed that PRODH2 engineering enhances the metabolic and immune functions of CAR-T cells against cancer. Together, these findings provide a system for identification of GOF immune boosters and demonstrate PRODH2 as a target to enhance CAR-T efficacy.
引用
收藏
页码:595 / +
页数:35
相关论文
共 100 条
[61]   CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling [J].
Platt, Randall J. ;
Chen, Sidi ;
Zhou, Yang ;
Yim, Michael J. ;
Swiech, Lukasz ;
Kempton, Hannah R. ;
Dahlman, James E. ;
Parnas, Oren ;
Eisenhaure, Thomas M. ;
Jovanovic, Marko ;
Graham, Daniel B. ;
Jhunjhunwala, Siddharth ;
Heidenreich, Matthias ;
Xavier, Ramnik J. ;
Langer, Robert ;
Anderson, Daniel G. ;
Hacohen, Nir ;
Regev, Aviv ;
Feng, Guoping ;
Sharp, Phillip A. ;
Zhang, Feng .
CELL, 2014, 159 (02) :440-455
[62]   Tumor Immunotherapy Directed at PD-1 [J].
Ribas, Antoni .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (26) :2517-2519
[63]   edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J].
Robinson, Mark D. ;
McCarthy, Davis J. ;
Smyth, Gordon K. .
BIOINFORMATICS, 2010, 26 (01) :139-140
[64]   Adoptive cell transfer as personalized immunotherapy for human cancer [J].
Rosenberg, Steven A. ;
Restifo, Nicholas P. .
SCIENCE, 2015, 348 (6230) :62-68
[65]   Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities [J].
Roybal, Kole T. ;
Lim, Wendell A. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 35, 2017, 35 :229-253
[66]   Therapeutic T cell engineering [J].
Sadelain, Michel ;
RiviSre, Isabelle ;
Riddell, Stanley .
NATURE, 2017, 545 (7655) :423-431
[67]  
Saoudi Abdelhadi, 2014, Small GTPases, V5, DOI 10.4161/sgtp.28208
[68]   CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients [J].
Savoldo, Barbara ;
Ramos, Carlos Almeida ;
Liu, Enli ;
Mims, Martha P. ;
Keating, Michael J. ;
Carrum, George ;
Kamble, Rammurti T. ;
Bollard, Catherine M. ;
Gee, Adrian P. ;
Mei, Zhuyong ;
Liu, Hao ;
Grilley, Bambi ;
Rooney, Cliona M. ;
Heslop, Helen E. ;
Brenner, Malcolm K. ;
Dotti, Gianpietro .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (05) :1822-1826
[69]  
Scharping NE, 2016, IMMUNITY, V45, P374, DOI [10.1016/j.immuni.2016.07.009, 10.1016/j.immuni.2016.08.009]
[70]   Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression [J].
Schmiedel, Benjamin J. ;
Singh, Divya ;
Madrigal, Ariel ;
Valdovino-Gonzalez, Alan G. ;
White, Brandie M. ;
Zapardiel-Gonzalo, Jose ;
Ha, Brendan ;
Altay, Gokmen ;
Greenbaum, Jason A. ;
McVicker, Graham ;
Seumois, Gregory ;
Rao, Anjana ;
Kronenberg, Mitchell ;
Peters, Bjoern ;
Vijayanand, Pandurangan .
CELL, 2018, 175 (06) :1701-+