Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors

被引:101
作者
Zhang, Qiang [1 ]
Deng, Yanghua [1 ]
Hu, Zhonghua [1 ]
Liu, Yafei [1 ]
Yao, Mingming [1 ]
Liu, Peipei [1 ]
机构
[1] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
关键词
ARRAYS; NANOSTRUCTURES; COMPOSITES; ELECTRODES; TEXTILES; GROWTH; FILMS;
D O I
10.1039/c4cp02928c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel electrode material of the three-dimensional (3D) multicomponent oxide NiCo2O4@NiMoO4 core-shell was synthesized via a facile two-step hydrothermal method using a post-annealing procedure. The uniform NiMoO4 nanosheets were grown on the seaurchin-like NiCo2O4 backbone to form a NiCo2O4@NiMoO4 core-shell material constructed by interconnected ultrathin nanosheets, so as to produce hierarchical mesopores with a large specific surface area of 100.3 m(2) g(-1). The porous feature and core-shell structure can facilitate the penetration of electrolytic ions and increases the number of electroactive sites. Hence, the NiCo2O4@NiMoO4 material exhibited a high specific capacitance of 2474 F g(-1) and 2080 F g(-1) at current densities of 1 A g(-1) and 20 A g(-1) respectively, suggesting that it has not only a very large specific capacitance, but also a good rate performance. In addition, the capacitance loss was only 5.0% after 1000 cycles of charge and discharge tests at the current density of 10 A g(-1), indicating high stability. The excellent electrochemical performance is mainly attributed to its 3D core-shell and hierarchical mesoporous structures which can provide unobstructed pathways for the fast diffusion and transportation of ions and electrons, a large number of active sites and good strain accommodation.
引用
收藏
页码:23451 / 23460
页数:10
相关论文
共 37 条
[1]   Graphene/carbon nanotube composites not exhibiting synergic effect for supercapacitors: The resulting capacitance being average of capacitance of individual components [J].
Buglione, Lucia ;
Pumera, Martin .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 17 :45-47
[2]   Manganese oxide/carbon composite electrodes for electrochemical capacitors [J].
Chang, JK ;
Lin, CT ;
Tsai, WT .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (07) :666-671
[3]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[4]   Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Sukcharoenchoke, Saowalak ;
Zhou, Chongwu .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[5]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[6]   Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam [J].
Gao, Yinyi ;
Chen, Shuli ;
Cao, Dianxue ;
Wang, Guiling ;
Yin, Jinling .
JOURNAL OF POWER SOURCES, 2010, 195 (06) :1757-1760
[7]   Carbon nanofiber electrodes for supercapacitors derived from new precursor polymer: Poly(acrylonitrile-co-vinylimidazole) [J].
Jung, Kyung-Hye ;
Deng, Wenjin ;
Smith, Dennis W., Jr. ;
Ferraris, John P. .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 23 :149-152
[8]   ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances [J].
Li, Gao-Ren ;
Wang, Zi-Long ;
Zheng, Fu-Lin ;
Ou, Yan-Nan ;
Tong, Ye-Xiang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (12) :4217-4221
[9]   Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries [J].
Liu, Bin ;
Zhang, Jun ;
Wang, Xianfu ;
Chen, Gui ;
Chen, Di ;
Zhou, Chongwu ;
Shen, Guozhen .
NANO LETTERS, 2012, 12 (06) :3005-3011
[10]   Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials [J].
Liu, Jinping ;
Jiang, Jian ;
Cheng, Chuanwei ;
Li, Hongxing ;
Zhang, Jixuan ;
Gong, Hao ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2011, 23 (18) :2076-+