On the Kernel of some one-dimensional singular integral operators with shift

被引:0
作者
Kravchenko, Viktor G. [1 ]
Marreiros, Rui C. [1 ]
机构
[1] Univ Algarve, Fac Ciencias & Tecnol, Dept Matemat, P-8005139 Faro, Portugal
来源
EXTENDED FIELD OF OPERATOR THEORY | 2007年 / 171卷
关键词
singular integral operators; shift operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An estimate for the dimension of the kernel of the singular integral operator with shift (I+ Sigma(n)/j=1 aj(t)U-j) P+ +P- : L-2(R) -> L-2(R) is obtained, where P +/- are the Cauchy projectors, (U phi)(t) = phi(t + h), h epsilon R+, is the shift operator and a(j)(t) are continuous functions on the one point compactification of R. The roots of the polynomial 1 +Sigma(n)/j=1 a(j) (infinity)n(j) are assumed to belong all simultaneously either to the interior of the unit circle or to its exterior.
引用
收藏
页码:245 / +
页数:3
相关论文
共 12 条
[1]  
[Anonymous], 1987, OPERATOR THEORY ADV
[2]  
Baturev A. A., 1996, J INTEGRAL EQU APPL, V8, P1
[3]  
Clancey K., 1981, OPERATOR THEORY ADV, V3
[4]  
DUDUCHAVA RB, 1979, T TBIL MAT I AK NAUK
[5]  
GOHBERG I, 1992, OPERATOR THEORY ADV, V54
[6]  
GOHBERG I, 1992, OPERATOR THEORY ADV, V53
[7]  
Horn R.A., 1996, MATRIX ANAL
[8]  
Kravchenko V, 2003, OPER THEOR, V142, P189
[9]  
KRAVCHENKO V. G., 2001, J INTEGRAL EQUAT, V13, P339
[10]  
Kravchenko V.G., 1994, MATH ITS APPL, V289