A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems

被引:27
作者
Anastassi, ZA [1 ]
Simos, TE [1 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, GR-22100 Tripolis, Greece
关键词
methods : numerical; dispersion-fitting; dissipation-fitting; orbital problems; Runge-Kutta methods; explicit methods;
D O I
10.1016/j.newast.2004.04.005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a new explicit Runge-Kutta method of fourth algebraic order with minimum error of the fifth algebraic order (whose limit is zero, when the step-length tends to zero) and infinite order of dispersion and dissipation. The numerical results of a wide range of methods when these are applied to well-known periodic orbital problems show the efficiency of the new constructed method. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 7 条
[1]  
Dormand J., 1980, J. Comput. Appl. Math., V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
[2]  
ENGELNMULLGES G, 1996, NUMER ALGORITHMS, P423
[3]   HIGH-ORDER P-STABLE MULTISTEP METHODS [J].
FRANCO, JM ;
PALACIOS, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 30 (01) :1-10
[4]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[5]  
SIMOS TE, 2000, SPECIALIST PERIODICA, P32
[6]   STABILIZATION OF COWELLS METHOD [J].
STIEFEL, E ;
BETTIS, DG .
NUMERISCHE MATHEMATIK, 1969, 13 (02) :154-&
[7]   EXPLICIT RUNGE-KUTTA (-NYSTROM) METHODS WITH REDUCED PHASE ERRORS FOR COMPUTING OSCILLATING SOLUTIONS [J].
VANDERHOUWEN, PJ ;
SOMMEIJER, BP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :595-617