Wetting phenomena of Al-Cu alloys on sapphire below 800 °C

被引:20
作者
Klinter, Andreas J. [1 ]
Leon-Patino, Carlos A. [3 ]
Drew, Robin A. L. [2 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2B2, Canada
[2] Concordia Univ, Fac Engn & Comp Sci, Montreal, PQ H3G 1M8, Canada
[3] Univ Michoacana, Inst Invest Met, Morelia 58000, Michoacan, Mexico
基金
加拿大自然科学与工程研究理事会;
关键词
Wetting; Al-Cu alloys; Sapphire; Thermodynamic modeling; Interfaces; ALUMINA; STABILIZATION; WETTABILITY; INTERFACES; CONTACT; FOAMS; ANGLE;
D O I
10.1016/j.actamat.2009.10.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions theta transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl2O4 for Al-7Cu and Al2O3 for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl2O4 under CuAl2 drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl2O4 causes the reduced sigma(sl) and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in theta with higher copper contents is the increasing sigma(lv) of the alloy. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1350 / 1360
页数:11
相关论文
共 31 条
  • [1] ANSARA I, 1998, COST 507 THERMOCHEMI, V2, P28
  • [2] FactSage thermochemical software and databases - recent developments
    Bale, C. W.
    Belisle, E.
    Chartrand, P.
    Decterov, S. A.
    Eriksson, G.
    Hack, K.
    Jung, I. -H.
    Kang, Y. -B.
    Melancon, J.
    Pelton, A. D.
    Robelin, C.
    Petersen, S.
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2009, 33 (02): : 295 - 311
  • [3] BALE CW, 2009, FACTSAGE 6 0
  • [4] INTERFACE FORMATION AND STRENGTH IN CERAMIC-METAL SYSTEMS
    DALGLEISH, BJ
    SAIZ, E
    TOMSIA, AP
    CANNON, RM
    RITCHIE, RO
    [J]. SCRIPTA METALLURGICA ET MATERIALIA, 1994, 31 (08): : 1109 - 1114
  • [5] Determination of the nature of metal-oxide interfacial interactions from sessile drop data
    Eustathopoulos, N
    Drevet, B
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 249 (1-2): : 176 - 183
  • [6] GADALLA AMM, 1964, BRIT CERAM T, P63
  • [7] Ghetta V, 2002, J AM CERAM SOC, V85, P961, DOI 10.1111/j.1151-2916.2002.tb00199.x
  • [8] INTERFACES WITH CONTROLLED TOUGHNESS AS MECHANICAL FUSES TO ISOLATE FIBERS FROM DAMAGE
    GUPTA, V
    ARGON, AS
    CORNIE, JA
    [J]. JOURNAL OF MATERIALS SCIENCE, 1989, 24 (06) : 2031 - 2040
  • [9] HOWE JM, 1993, INT MATER REV, V38, P233, DOI 10.1179/095066093790150929
  • [10] Iida T., 1988, The Physical Properties of Liquid Metals