An optimized nano-positioning stage for Bristol's Transverse Dynamic Force Microscope

被引:5
作者
De Silva, G. [1 ]
Burgess, S. C. [1 ]
Hatano, T. [1 ]
Khan, S. G. [1 ]
Zhang, K. [1 ]
Nguyen, T. [3 ]
Herrmann, G. [1 ]
Edwards, C. [3 ]
Miles, M. [2 ]
机构
[1] Univ Bristol, Dept Mech Engn, Univ Walk, Bristol BS8 1TR, Avon, England
[2] Univ Bristol, Ctr Nanosci & Quantum Informat, Tyndall Ave, Bristol BS8 1FD, Avon, England
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
x-y Stage; Force Microscope; Micro-/Nanosystems; Multi-Disciplinary Modelling; Motion Control; AFM;
D O I
10.1016/j.ifacol.2016.10.524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the design process for the optimisation of a nano-precision actuation stage for a Transverse Dynamic Force Microscope (TDFM). A TDFM is an advanced type of Atomic Force microscope (AFM) that does not contact the specimen and therefore has potential for increased accuracy and decreased damage to the specimen. The nano-precision stage actuates in a horizontal plane within a region of 1 mu mX1 mu m and with a resolution of 0.3 nm. The non-contact TDFM has been developed at Bristol University for the precise topographical mapping of biological and non-biological specimens in ambient conditions. The design objective was to maximise positional accuracy during high speed actuation. This is achieved by minimising vibrations and distortion of the stage during actuation. Optimal performance was achieved through maximising out-of-plane stiffness through shape and material selection, as well optimisation of the anchoring system. The design was subject to constraints including an in-plane stiffness constraint, space constraints and design features relating to the laser interferometry position sensing system and subsequent controller design. (C) 2016, IFAC (International Federation of Automatic Control) Hosting Elsevier Ltd. All rights reseirved.
引用
收藏
页码:120 / 126
页数:7
相关论文
共 19 条
[1]   A new detection system for extremely small vertically mounted cantilevers [J].
Antognozzi, M. ;
Ulcinas, A. ;
Picco, L. ;
Simpson, S. H. ;
Heard, P. J. ;
Szczelkun, M. D. ;
Brenner, B. ;
Miles, M. J. .
NANOTECHNOLOGY, 2008, 19 (38)
[2]   Observation of molecular layering in a confined water film and study of the layers viscoelastic properties [J].
Antognozzi, M ;
Humphris, ADL ;
Miles, MJ .
APPLIED PHYSICS LETTERS, 2001, 78 (03) :300-302
[3]  
Binnig G., 1986, Physical review letters
[4]   Influence of environmental conditions on shear-force distance control in near-field optical microscopy [J].
Brunner, R ;
Marti, O ;
Hollricher, O .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (12) :7100-7106
[5]  
Burnham N. A., 1989, J VACUUM SCI TECHNOL
[6]   Self-Assembling Cages from Coiled-Coil Peptide Modules [J].
Fletcher, Jordan M. ;
Harniman, Robert L. ;
Barnes, Frederick R. H. ;
Boyle, Aimee L. ;
Collins, Andrew ;
Mantell, Judith ;
Sharp, Thomas H. ;
Antognozzi, Massimo ;
Booth, Paula J. ;
Linden, Noah ;
Miles, Mervyn J. ;
Sessions, Richard B. ;
Verkade, Paul ;
Woolfson, Derek N. .
SCIENCE, 2013, 340 (6132) :595-599
[7]   Nanoscale compositional mapping with gentle forces [J].
Garcia, Ricardo ;
Magerle, Robert ;
Perez, Ruben .
NATURE MATERIALS, 2007, 6 (06) :405-411
[8]   Applied physics - High-speed atomic force microscopy [J].
Hansma, Paul K. ;
Schitter, Georg ;
Fantner, Georg E. ;
Prater, Craig .
SCIENCE, 2006, 314 (5799) :601-602
[9]   Methods for imaging DNA in liquid with lateral molecular-force microscopy [J].
Harniman, R. L. ;
Vicary, J. A. ;
Hoerber, J. K. H. ;
Picco, L. M. ;
Miles, M. J. ;
Antognozzi, M. .
NANOTECHNOLOGY, 2012, 23 (08)
[10]  
HOH J H, 1992, Trends in Cell Biology, V2, P208, DOI 10.1016/0962-8924(92)90248-L