Lightweight Progressive Residual Clique Network for Image Super-Resolution

被引:0
作者
Huang, Baojin [1 ]
He, Zheng [1 ]
Wang, Zhongyuan [1 ,2 ]
Jiang, Kui [1 ]
Wang, Guangcheng [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Shenzhen Inst, Shenzhen 518057, Peoples R China
来源
2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI) | 2020年
基金
中国国家自然科学基金;
关键词
Super-resolution; convolutional neural network; lightweight; residual channel separation block;
D O I
10.1109/ICTAI50040.2020.00122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deeper and wider convolutional neural networks (CNN) hava been widely applied to the single image super-resolution (SR) task for its appealing performance. However, enormous parametric memory footprint hinders its real-time application on mobile devices, especially in the energy-sensitive environment. In this work, we take both the reconstruction performance and efficiency into consideration and propose a lightweight progressive residual clique network (PRCN) for image SR. PRCN is built on the two-stage residual channel separation block (RCSB) and long-skip connections. First, we divide the input into four channel groups to differently learn texture details, immediately followed by a primary fusion to establish cross-channel correspondence in the first stage. Then we perform a further fusion on the outputs of the first stage to constitute a clique for the refinement in the second stage. Meanwhile, we employ SENet to improve the outputs of the second stage with the separate features of the first stage. This design not only enforces the correlation across channels, but also allows fewer densely connected blocks. Experimental results on public datasets show that PRCN outperforms state-of-the-art methods in terms of performance and complexity.
引用
收藏
页码:767 / 772
页数:6
相关论文
共 50 条
  • [1] GRFN: A Group Residual Feature Network for Lightweight Image Super-Resolution
    Yang, Xin
    Hong, Chaming
    Zhang, Panpan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, : 3513 - 3533
  • [2] PFAN: progressive feature aggregation network for lightweight image super-resolution
    Chen, Liqiong
    Yang, Xiangkun
    Wang, Shu
    Shen, Ying
    Wu, Jing
    Huang, Feng
    Qiu, Zhaobing
    VISUAL COMPUTER, 2025,
  • [3] Progressive residual feedback network with additional constraints for single image super-resolution
    Zhang, Wenbo
    Chen, Zhengquan
    Li, Quanlong
    Chang, Kaixin
    Zhai, Hengxing
    Hou, Yandong
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [4] Satellite image super-resolution based on progressive residual deep neural network
    Zhang, Junwei
    Liu, Shigang
    Peng, Yali
    Li, Jun
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (03)
  • [5] Lightweight Inverse Separable Residual Information Distillation Network for Image Super-Resolution Reconstruction
    Zhao X.
    Li X.
    Song Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (05): : 419 - 432
  • [6] Lightweight Parallel Feedback Network for Image Super-Resolution
    Beibei Wang
    Changjun Liu
    Binyu Yan
    Xiaomin Yang
    Neural Processing Letters, 2023, 55 : 3225 - 3243
  • [7] A sparse lightweight attention network for image super-resolution
    Hongao Zhang
    Jinsheng Fang
    Siyu Hu
    Kun Zeng
    The Visual Computer, 2024, 40 (2) : 1261 - 1272
  • [8] Lightweight bidirectional feedback network for image super-resolution
    Wang, Beibei
    Yan, Binyu
    Liu, Changjun
    Hwangbo, Ryul
    Jeon, Gwanggil
    Yang, Xiaomin
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [9] LIRSRN: A Lightweight Infrared Image Super-Resolution Network
    Lin, Chun-An
    Liu, Tsung-Jung
    Liu, Kuan-Hsien
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [10] Lightweight image super-resolution network using involution
    Jiu Liang
    Yu Zhang
    Jiangbo Xue
    Yu Zhang
    Yanda Hu
    Machine Vision and Applications, 2022, 33