Genus 2 curves and generalized theta divisors

被引:5
作者
Brivio, Sonia [1 ]
Favale, Filippo F. [1 ]
机构
[1] Univ Milano Bicocca, Dept Math, Via Roberto Cozzi 55, I-20125 Milan, MI, Italy
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2019年 / 155卷
关键词
Moduli spaces; Semistable vector bundles; Theta divisors; STABLE VECTOR-BUNDLES; MODULI SPACES; VARIETIES; RATIONALITY;
D O I
10.1016/j.bulsci.2019.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate generalized theta divisors Theta(r) in the moduli spaces U-C(r,r) of semistable vector bundles on a curve C of genus 2. We provide a desingularization Phi of Theta(r) in terms of a projective bundle pi : P(V) -> U-C (r - 1, r) which parametrizes extensions of stable vector bundles on the base by O-C. Then, we study the composition of Phi with the well known theta map theta. We prove that, when it is restricted to the general fiber of pi, we obtain a linear embedding. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:112 / 140
页数:29
相关论文
共 27 条
[1]  
Arbarello E, 1985, GEOMETRY ALGEBRAIC C, VI
[2]  
Atiyah Michael F., 1957, Trans. Amer. Math. Soc., V85, P181
[3]   Stability of secant bundles on the second symmetric power of curves [J].
Basu, Suratno ;
Dan, Krishanu .
ARCHIV DER MATHEMATIK, 2018, 110 (03) :245-249
[4]  
BEAUVILLE A, 1989, J REINE ANGEW MATH, V398, P169
[5]   Vector bundles and theta functions on curves of genus 2 and 3 [J].
Beauville, A .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :607-618
[6]   Some stable vector bundles with reducible theta divisor [J].
Beauville, A .
MANUSCRIPTA MATHEMATICA, 2003, 110 (03) :343-349
[7]   Reconstructing vector bundles on curves from their direct image on symmetric powers [J].
Biswas, Indranil ;
Nagaraj, D. S. .
ARCHIV DER MATHEMATIK, 2012, 99 (04) :327-331
[8]   Families of vector bundles and linear systems of theta divisors [J].
Brivio, Sonia .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (06)
[9]   THE PICARD GROUP OF VARIETIES OF MODULI OF SEMI-STABLE VECTOR-BUNDLES ON ALGEBRAIC-CURVES [J].
DREZET, JM ;
NARASIMHAN, MS .
INVENTIONES MATHEMATICAE, 1989, 97 (01) :53-94
[10]   SOME RESULTS OF SEGRE, CORRADO ON RULED SURFACES [J].
GHIONE, F .
MATHEMATISCHE ANNALEN, 1981, 255 (01) :77-95