Wavelength Dependence of Ultrahigh-Resolution Optical Coherence Tomography Using Supercontinuum for Biomedical Imaging

被引:42
作者
Nishizawa, Norihiko [1 ]
Kawagoe, Hiroyuki [1 ]
Yamanaka, Masahito [1 ]
Matsushima, Miyoko [2 ]
Mori, Kensaku [3 ]
Kawabe, Tsutomu [2 ]
机构
[1] Nagoya Univ, Dept Elect Engn & Comp Sci, Nagoya, Aichi 4648603, Japan
[2] Nagoya Univ, Grad Sch Med, Nagoya, Aichi 4668550, Japan
[3] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan
基金
日本学术振兴会;
关键词
Optical coherence tomography; supercontinuum; optical coherence microscopy; fiber lasers; ultrashort pulse; 1.7; MU-M; ALL-FIBER SYSTEM; REAL-TIME; BRONCHIAL LESIONS; WATER-CONTENT; LIGHT-SOURCE; LOW-NOISE; EX-VIVO; GENERATION; MICROSCOPY;
D O I
10.1109/JSTQE.2018.2854595
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical coherence tomography (OCT) is a noninvasive cross-sectional imaging technique with micrometer resolution. The theoretical axial resolution is determined by the center wavelength and bandwidth of the light source, and the wider the bandwidth, the higher the axial resolution. The characteristics of OCT imaging depend on the optical wavelength used. In this paper, we investigated the wavelength dependence of ultrahigh-resolution (UHR) OCT using a supercontinuum for biomedical imaging. Wideband, high-power, low-noise supercontinua (SC) were generated at lambda = 0.8,1.1,1.3, and 1.7 mu m based on ultrashort pulses and nonlinear fibers. The wavelength dependence of OCT imaging was examined quantitatively using biological phantoms. Ultra high-resolution imaging of a rat lung was demonstrated with lambda = 0.8-1.0 mu m UHR-OCT. The variation of alveolar volume was estimated using three-dimensional image analysis. Finally, UHR-spectral domain-OCT and optical coherence microscopy at 1.7 mu m were developed, and high-resolution and high-penetration imaging of turbid tissue, especially mouse brain, was demonstrated.
引用
收藏
页数:15
相关论文
共 77 条
  • [1] Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy
    Aguirre, Aaron D.
    Chen, Yu
    Bryan, Bradley
    Mashimo, Hiroshi
    Huang, Qin
    Connolly, James L.
    Fujimoto, James G.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (01)
  • [2] Swept source optical coherence microscopy using a 1310 nm VCSEL light source
    Ahsen, Osman O.
    Tao, Yuankai K.
    Potsaid, Benjamin M.
    Sheikine, Yuri
    Jiang, James
    Grulkowski, Ireneusz
    Tsai, Tsung-Han
    Jayaraman, Vijaysekhar
    Kraus, Martin F.
    Connolly, James L.
    Hornegger, Joachim
    Cable, Alex
    Fujimoto, James G.
    [J]. OPTICS EXPRESS, 2013, 21 (15): : 18021 - 18033
  • [3] Alfano R. R., 2006, The Supercontinuum Laser Source: Fundamentals with Updated References
  • [4] Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm
    Bashkatov, AN
    Genina, EA
    Kochubey, VI
    Tuchin, VV
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (15) : 2543 - 2555
  • [5] Full range complex spectral domain optical coherence tomography without additional phase shifters
    Baumann, Bernhard
    Pircher, Michael
    Goetzinger, Erich
    Hitzenberger, Christoph K.
    [J]. OPTICS EXPRESS, 2007, 15 (20): : 13375 - 13387
  • [6] COMPARISON OF TWO IN VIVO MICROSCOPY TECHNIQUES TO VISUALIZE ALVEOLAR MECHANICS
    Bickenbach, Johannes
    Dembinski, Rolf
    Czaplik, Michael
    Meissner, Sven
    Tabuchi, Arata
    Mertens, Michael
    Knels, Lila
    Schroeder, Wolfgang
    Pelosi, Paolo
    Koch, Edmund
    Kuebler, Wolfgang M.
    Rossaint, Rolf
    Kuhlen, Ralf
    [J]. JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2009, 23 (05) : 323 - 332
  • [7] Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography
    Bizheva, K
    Unterhuber, A
    Hermann, B
    Povazay, B
    Sattmann, H
    Drexler, W
    Stingl, A
    Le, T
    Mei, M
    Holzwarth, R
    Reitsamer, HA
    Morgan, JE
    Cowey, A
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2004, 9 (04) : 719 - 724
  • [8] ALVEOLAR DIMENSIONS AND NUMBER - DEVELOPMENTAL AND HORMONAL-REGULATION
    BLANCO, LN
    MASSARO, GD
    MASSARO, D
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (04): : L240 - L247
  • [9] Forward-imaging instruments for optical coherence tomography
    Boppart, SA
    Bouma, BE
    Pitris, C
    Tearney, GJ
    Fujimoto, JG
    Brezinski, ME
    [J]. OPTICS LETTERS, 1997, 22 (21) : 1618 - 1620
  • [10] Bouma B. E., 2002, Handbook of Optical Coherence Tomography