Geometric and Electronic Properties of Edge-decorated Graphene Nanoribbons

被引:31
作者
Chang, Shen-Lin [1 ]
Lin, Shih-Yang [1 ]
Lin, Shih-Kang [2 ]
Lee, Chi-Hsuan [3 ]
Lin, Ming-Fa [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 701, Taiwan
[3] Natl Chengchi Univ, Grad Inst Appl Phys, Taipei 116, Taiwan
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
CARBON NANOTUBES; ENERGY GAPS; TRANSPORT; RIBBONS;
D O I
10.1038/srep06038
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Edge-decorated graphene nanoribbons are investigated with the density functional theory; they reveal three stable geometric structures. The first type is a tubular structure formed by the covalent bonds of decorating boron or nitrogen atoms. The second one consists of curved nanoribbons created by the dipole-dipole interactions between two edges when decorated with Be, Mg, or Al atoms. The final structure is a flat nanoribbon produced due to the repulsive force between two edges; most decorated structures belong to this type. Various decorating atoms, different curvature angles, and the zigzag edge structure are reflected in the electronic properties, magnetic properties, and bonding configurations. Most of the resulting structures are conductors with relatively high free carrier densities, whereas a few are semiconductors due to the zigzag-edge-induced anti-ferromagnetism.
引用
收藏
页数:8
相关论文
共 47 条
  • [1] Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes
    Cano-Marquez, Abraham G.
    Rodriguez-Macias, Fernando J.
    Campos-Delgado, Jessica
    Espinosa-Gonzalez, Claudia G.
    Tristan-Lopez, Ferdinando
    Ramirez-Gonzalez, Daniel
    Cullen, David A.
    Smith, David J.
    Terrones, Mauricio
    Vega-Cantu, Yadira I.
    [J]. NANO LETTERS, 2009, 9 (04) : 1527 - 1533
  • [2] Spin Channels in Functionalized Graphene Nanoribbons
    Cantele, Giovanni
    Lee, Young-Su
    Ninno, Domenico
    Marzari, Nicola
    [J]. NANO LETTERS, 2009, 9 (10) : 3425 - 3429
  • [3] Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes
    Cataldo, Franco
    Compagnini, Giuseppe
    Patane, Giacomo
    Ursini, Ornella
    Angelini, Giancarlo
    Ribic, Primoz Rebernik
    Margaritondo, Giorgio
    Cricenti, Antonio
    Palleschi, Giuseppe
    Valentini, Federica
    [J]. CARBON, 2010, 48 (09) : 2596 - 2602
  • [4] Chang SL, 2012, PHYS CHEM CHEM PHYS, V14, P16409, DOI [10.1039/c2cp42721, 10.1039/c2cp42721d]
  • [5] Catalytically assisted tip growth mechanism for single-wall carbon nanotubes
    Charlier, J. -C.
    Amara, H.
    Lambin, Ph.
    [J]. ACS NANO, 2007, 1 (03) : 202 - 207
  • [6] Magnetic moments in graphene with vacancies
    Chen, Jing-Jing
    Wu, Han-Chun
    Yu, Da-Peng
    Liao, Zhi-Min
    [J]. NANOSCALE, 2014, 6 (15) : 8814 - 8821
  • [7] The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes
    Dhakate, S. R.
    Chauhan, N.
    Sharma, S.
    Mathur, R. B.
    [J]. CARBON, 2011, 49 (13) : 4170 - 4178
  • [8] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534
  • [9] Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons
    Haskins, Justin
    Kinaci, Alper
    Sevik, Cem
    Sevincli, Haldun
    Cuniberti, Gianaurelio
    Cagin, Tahir
    [J]. ACS NANO, 2011, 5 (05) : 3779 - 3787
  • [10] A fast and robust algorithm for Bader decomposition of charge density
    Henkelman, Graeme
    Arnaldsson, Andri
    Jonsson, Hannes
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2006, 36 (03) : 354 - 360