Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity

被引:38
作者
Liu, Yu-Long
Liu, Yu-xi [1 ]
机构
[1] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
关键词
RESOLVED-SIDE-BAND; PARITY-TIME SYMMETRY; QUANTUM; OSCILLATOR; MOTION; LASER; LIMIT; ATOM;
D O I
10.1103/PhysRevA.96.023812
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a gain system is coupled to a loss system, the energy usually flows from the gain system to the loss one. We here present a counterintuitive theory for the ground-state cooling of a mechanical resonator in an optomechanical system via a gain cavity. The energy flows first from the mechanical resonator into the loss cavity and then into the gain cavity and finally localizes there. The energy localization in the gain cavity dramatically enhances the cooling rate of the mechanical resonator. Moreover, we show that an unconventional optical spring effect, e.g., a giant frequency shift and optically induced damping of the mechanical resonator, can be realized. Those feature a precooling-free ground-state cooling, i.e., the mechanical resonator in thermal excitation at room temperature can directly be cooled to its ground state. This cooling approach has potential application in fundamental tests of quantum physics without complicated cryogenic setups.
引用
收藏
页数:14
相关论文
共 134 条
[1]   Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States [J].
Abdi, M. ;
Degenfeld-Schonburg, P. ;
Sameti, M. ;
Navarrete-Benlloch, C. ;
Hartmann, M. J. .
PHYSICAL REVIEW LETTERS, 2016, 116 (23)
[2]   Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems [J].
Agarwal, G. S. ;
Qu, Kenan .
PHYSICAL REVIEW A, 2012, 85 (03)
[3]  
Andersen UL, 2015, NAT PHYS, V11, P713, DOI [10.1038/nphys3410, 10.1038/NPHYS3410]
[4]   Ultralow-dissipation optomechanical resonators on a chip [J].
Anetsberger, G. ;
Riviere, R. ;
Schliesser, A. ;
Arcizet, O. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2008, 2 (10) :627-633
[5]   High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. ;
Mackowski, J. -M. ;
Michel, C. ;
Pinard, L. ;
Francais, O. ;
Rousseau, L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[6]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[7]   Suppression of Stokes scattering and improved optomechanical cooling with squeezed light [J].
Asjad, Muhammad ;
Zippilli, Stefano ;
Vitali, David .
PHYSICAL REVIEW A, 2016, 94 (05)
[8]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[9]   Quantum optomechanics [J].
Aspelmeyer, Markus ;
Meystre, Pierre ;
Schwab, Keith .
PHYSICS TODAY, 2012, 65 (07) :29-35
[10]   Focus on Mechanical Systems at the Quantum Limit [J].
Aspelmeyer, Markus ;
Schwab, Keith .
NEW JOURNAL OF PHYSICS, 2008, 10